

Serial Communication Modbus

Instruction Manual Eleventh Edition ME0162-11A

IAI Corporation

Please Read Before Use

Thank you for purchasing our product.

This instruction manual explains the handling methods, structure and maintenance of this product, providing the information you need in order to use the product safely.

Before using the product, be sure to read this manual and fully understand the contents explained herein to ensure safe use of the product.

Please downloaded the user's manual from our website.

You can download it free of charge. User registration is required for the first time downloading.

URL : www.iai-robot.co.jp/data_dl/CAD_MANUAL/

When using the product, print out of the necessary portions of the relevant manual, or please display it on your computer, tablet terminal, etc. so that you can check it immediately.

After reading the instruction manual, keep it in a convenient place so that whoever is handling the product can refer to it quickly when necessary.

[Important]

- This instruction manual is an original document dedicated for this product.
- This product cannot be used in ways not shown in this instruction manual. IAI shall not be liable for any result whatsoever arising from the use of the product in any other way than what is noted in the manual.
- The information contained in this instruction manual is subject to change without notice for the purpose of product improvement.
- If any issues arise regarding the information contained in this instruction manual, contact our customer center or the nearest sales office.
- Use or reproduction of this instruction manual in full or in part without permission is prohibited.
- The company names, names of products and trademarks of each company shown in the text are registered trademarks.

Construction of Instruction Manual for Each Controller Model and This Manual

Product name	Instruction manual name	Control number
Serial Communication (Modbus)	This document	ME0162
PC software IA-OS	PC software IA-OS First Step Guide	ME0391
For RC/EC PC software	RCM-101-MW/ RCM-101-USB Instruction Manual	ME0155
Touch Panel Teaching Pendant TB-01	TB-01/01D/01DR Applicable for Position Controller Instruction Manual	ME0324
Touch Panel Teaching Pendant TB-02	TB-02/02D Applicable for Position Controller and ELECYLINDER Instruction Manual	ME0355
Touch Panel Teaching Pendant TB-03	TB-03 Applicable for Position Controller and ELECYLINDER Wired link Instruction Manual	ME0376
ACON-CB/CGB, DCON-CB/CGB	ACON-CB/CGB、DCON-CB/CGB Controller Instruction Manual	ME0343
ACON-CYB/PLB/POB、DCON- CYB/PLB/POB	ACON-CYB/PLB/POB DCON-CYB/PLB/POB Controller Instruction Manual	ME0354
ACON-CA, DCON-CA	ACON-CA, DCON-CA Controller Instruction Manual	ME0326
ACON-C/CG	ACON-C/CG Controller Positioner Type Instruction Manual	ME0176
ACON-PL/PO	ACON-PL/PO Controller Pulse Train Type Instruction Manual	ME0166
ACON-SE	ACON-SE Controller Serial Communication Type Instruction Manual	ME0171
ACON-CY	ACON-CY Controller Electromagnetic Valve System Type Instruction Manual	ME0167
PCON- CB/CGB/CFB/CGFB/CBP/CGBP	PCON- CB/CGB/CFB/CGFB/CBP/CGBP Controller Instruction Manual	ME0342
PCON-CYB/PLB/POB	PCON-CYB/PLB/POB Controller Instruction Manual	ME0353
PCON-CA/CFA	PCON-CA/CFA Controller Instruction Manual	ME0289
PCON-C/CG/CF	PCON-C/CG/CF Controller Positioner Type Instruction Manual	ME0170

Product name	Instruction manual name	Control number
PCON-PL/PO	PCON-PL/PO Controller Pulse Train Type Instruction Manual	ME0164
PCON-SE	PCON-SE Controller Serial communication Type Instruction Manual	ME0163
PCON-CY	PCON-CY Controller Electromagnetic Valve System Type Instruction Manual	ME0161
SCON-CB/CGB	SCON-CB/CGB Controller Instruction Manual	ME0340
SCON-CB-F (Servo Pressing Type)	SCON-CB series Controller Servo Pressing Type Instruction Manual	ME0345
SCON-CA/CAL/CGAL	SCON-CA/CAL/CGAL Controller Instruction Manual	ME0243
SCON-C	SCON Controller Instruction Manual	ME0161
RCP6S series + PLC Connection Unit	This document	ME0162
RCP6S, RCM-P6PC, RCM-P6AC、 RCM-P6DC	RCP6S Fieldbus Communication Instruction Manual	ME0349
ERC3	ERC3 Controller Integrated actuator Instruction Manual	ME0297
ERC2 (PIO)	ERC2 Controller (PIO Only) Integrated actuator Instruction Manual	ME0158
ERC2 (SIO)	ERC3 Controller (SIO Only)) Integrated actuator Instruction Manual	ME0159
ROBONET-SIO	ROBONET Instruction Manual	ME0208

Table of Contents

Safety Guide ·····	Intro-1
Precautions for Handling	Intro-8

Chapter 1 Communication Overview

	1.1	Overview (Modbus)	· ·	1-1	l
--	-----	-------------------	-----	-----	---

Chapter 2 Confirmation of Specifications

2.1	Specifications of Serial Communication (Modbus)	2-1
	2.1.1 Modbus Communication specifications	··· 2-1
	2.1.2 Communication Mode ······	··· 2 - 2
	2.1.3 Transmission mode······	2-3

Chapter 3 Preparation for Communication

3.1	System configuration ····································
	3.1.1 In Case the Master (host) Uses RS-232C Interface
	3.1.2 In Case the Master (host) Uses RS-485 Interface
3.2	Wiring method ····································
	3.2.1 In Case the Master (host) Uses RS-232C Interface wiring
	3.2.2 In Case the Master (host) Uses RS-485 Interface wiring
3.3	Pin Assignment of Serial Communication Connector in PLC
	(Reference) ····································
3.4	Various Setting before Starting Communication
3.5	Setting Axis Numbers 3-8
	3.5.1 For Controller Equipped with Rotary Switch
	3.5.2 For Controller Not Equipped with Rotary Switch
3.6	Setting Controller Communication Speed ······ 3-11
	3.6.1 Setting Wiring and Hardware for Each System
	3.6.2 Setting Communication Speed ···································

Chapter 4 Communication

4.1	Message Transmission Timing ······ 4-1
4.2	Timeout and Retry 4-2
4.3	Internal Addresses and Data Structure of RC Controller
	4.3.1 Structure of Modbus Registers
	4.3.2 Details of Modbus Registers
	4.3.3 Structure of Modbus Status Registers
	4.3.4 Detail of Modbus Status Registers

Chapter 5 Modbus RTU

5.1	Message Frames (Query and Response)	5-1
5.2	List of RTU Mode Queries	5-5
5.3	Data and Status Reading (Function code 03)	5-9

	5.3.1 Reading Consecutive Multiple Registers	5-9
	5.3.2 Alarm Detail Description Reading (ALA0, ALC0, ALT0)	5-13
	5.3.3 Position Data Description Reading (PCMD, INP, VCMD, ZNMP, ZNLP,	
	ACMD, DCMD, PPOW, LPOW, CTLF)······	5-15
	5.3.4 Total moving count Reading (TLMC)	5-18
	5.3.5 Total moving distance Reading (ODOM) (in 1m units)	5-20
	5.3.6 Current Time Reading (TIMN) ······	5-22
	5.3.7 Total FAN Driving Time Reading (TFAN)	5-26
	5.3.8 Current Position Reading (PNOW) ······	5-28
	5.3.9 Currently generated alarm code Reading (ALMC)	5-30
	5.3.10 I/O Port Input Signal Status Reading (DIPM)	5-32
	5.3.11 I/O Port Output Signal Status Reading (DOPM)	5-37
	5.3.12 Controller Status Signal Reading 1 (DSS1)	
	5.3.13 Controller Status Signal Reading 2 (DSS2)	5-44
	5.3.14 Controller Status Signal Reading 3 (DSSE)	5-46
	5.3.15 Controller Status Signal Reading 4 (STAT)	5-48
	5.3.16 Current Speed Reading (VNOW)	5-50
	5.3.17 Current Ampere Reading (CNOW)	5-52
	5.3.18 Deviation Reading (DEVI) ······	5-54
	5.3.19 Total Time after Power On Reading (STIM)	5-56
	5.3.20 Special Input Port Input Signal Status Reading (SIPM)	5-58
	5.3.21 Zone Output Signal Status Reading (ZONS)	5-60
	5.3.22 Positioning Completed Position Number Reading (POSS)	
	Exected Program Number Register (Servo Press Type) (POSS)···········	5-62
	5.3.23 Controller Status Signal Reading 5 (SSSE)	5-64
	5.3.24 Current Load ReadingSCON-CA/CB, PCON-CBP only	5-66
	5.3.25 Overload Level Monitor Reading (OLLV)SCON-CA/CAL/CB Only	5-68
	5.3.26 Press Program Alarm Code Reading (ALMP)Servo Press Type Only	5-70
	5.3.27 Alarm Generated Press Program No. Reading (ALMP)	
	Servo Press Type Only	5-72
	5.3.28 Press Program Status Register Reading (PPST)	
	Servo Press Type Only	5-74
	5.3.29 Press Program Judgement Status Register Reading (PPJD)	
	Servo Press Type Only·····	5-76
5.4	Operation Commands and Data Rewrite (Function code 05) 5-7	
	5.4.1 Writing to Coil ······	5-78
	5.4.2 Safety Speed Enable/Disable Switching (SFTY)	
	5.4.3 Servo ON/OFF (SON)	
	5.4.4 Alarm Reset (ALRS) ······	
	5.4.5 Brake Forced Release (BKRL) ······	
	5.4.6 Pause (STP)	
	5.4.7 Home Return (HOME) ······	
	5.4.8 Positioning Start Command (CSTR) ······	
	5.4.9 Jog/Inch Switching (JISL)	5-93

	5.4.10	Teaching Mode Command (MOD)
	5.4.11	Position Data Load Command (TEAC) ······ 5-97
	5.4.12	Jog+ Command (JOG+) ······ 5-99
	5.4.13	Jog- Command (JOG-) 5-101
	5.4.14	Start Positions 0 to 7 (ST0 to ST7) Movement Command
		(Limited to solenoid valve mode)
	5.4.15	Load Cell Calibration Command (CLBR)
	5.4.16	PIO/Modbus Switching Setting (PMSL) 5-108
	5.4.17	Deceleration Stop (STOP) 5-110
	5.4.18	Axis operation permission (ENMV) (Servo Press Type Only)
	5.4.19	Program Home Position Movement (PHOM) (Servo Press Type Only) 5-114
	5.4.20	Search Stop (SSTP) (Servo Press Type Only)5-116
	5.4.21	Program compulsoly finish (FPST) (Servo Press Type Only)
	5.4.22	Program Start (PSTR) (Servo Press Type Only) 5-120
5.5	Direct	Writing of Control Information (Function code 06) 5-122
	5.5.1 V	Vriting to Registers
5.6	Direct	Writing of Positioning Data (Function code 10)······ 5-127
	5.6.1 N	Jumerical Value Movement Command 5-127
	5.6.2 V	Vriting Position Table Data 5-144

Chapter 6 Modbus ASCII

6.1	Message Frames (Query and Response) ······
6.2	ASCII Code Table
6.3	List of ASCII Mode Queries ······ 6-6
6.4	Data and Status Reading (Function code 03) ······ 6-10
	6.4.1 Reading Consecutive Multiple Registers
	6.4.2 Alarm Detail Description Reading (ALA0, ALC0, ALT0)
	6.4.3 Position Data Description Reading
	(PCMD, INP, VCMD, ZNMP, ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF)····· 6-16
	6.4.4 Total moving count Reading (TLMC)······ 6-19
	6.4.5 Total moving distance Reading (ODOM) (in 1mm units)
	6.4.6 Current Time Reading (TIMN) ······ 6-23
	6.4.7 Total FAN Driving Time Reading (TFAN) ······ 6-27
	6.4.8 Current Position Reading (PNOW) ······ 6-29
	6.4.9 Currently Generated Alarm Code Reading (ALMC)
	6.4.10 I/O Port Input Signal Status Reading (DIPM)
	6.4.11 I/O Port Output Signal Status Reading (DOPM)
	6.4.12 Controller Status Signal Reading 1 (DSS1)
	6.4.13 Controller Status Signal Reading 2 (DSS2) ······ 6-45
	6.4.14 Controller Status Signal Reading 3 (DSSE)
	6.4.15 Controller Status Signal Reading 4 (STAT)
	6.4.16 Current Speed Reading (VNOW)······ 6-51
	6.4.17 Current Ampere Reading (CNOW)
	6.4.18 Deviation Reading (DEVI) ······ 6-55

	6.4.19 Total Time after Power On Reading (STIM)	6-57
	6.4.20 Special Input Port Input Signal Status Reading (SIPM)	
	6.4.21 Zone Output Signal Status Reading (ZONS)	
	6.4.22 Positioning Completed Position Number Reading (POSS)	
	Exected Program Number Register (Servo Press Type) (POSS)······	6-63
	6.4.23 Controller Status Signal Reading 5 (SSSE)	6-65
	6.4.24 Current Load ReadingSCON-CA/CB, PCON-CBP only	6-67
	6.4.25 Overload Level Monitor Reading (OLLV)SCON-CA/CAL/CB Only	6-69
	6.4.26 Press Program Alarm Code Reading (ALMP)Servo Press Type Only	6-71
	6.4.27 Alarm Generated Press Program No. Reading (ALMP)	
	Servo Press Type Only	··· 6-73
	6.4.28 Press Program Status Register Reading (PPST)	
	Servo Press Type Only	··· 6 - 75
	6.4.29 Press Program Judgement Status Register Reading (PPJD)	
	Servo Press Type Only	
6.5	Operation Commands and Data Rewrite (Function code 05)	
	6.5.1 Writing to Coil ·····	
	6.5.2 Safety Speed Enable/Disable Switching (SFTY) ·····	6-80
	6.5.3 Servo ON/OFF (SON)	
	6.5.4 Alarm Reset (ALRS) ······	
	6.5.5 Brake Forced Release (BKRL) ······	
	6.5.6 Pause (STP)·····	
	6.5.7 Home Return (HOME) ······	
	6.5.8 Positioning Start Command (CSTR) ·····	
	6.5.9 Jog/Inch Switching (JISL)·····	
	6.5.10 Teaching Mode Command (MOD) ·····	
	6.5.11 Position Data Load Command (TEAC) ·····	
	6.5.12 Jog+ Command (JOG+) ·····	
	6.5.13 Jog- Command (JOG-)·····	6-102
	6.5.14 Start Positions 0 to 7 (ST0 to ST7) Movement Command	
	(Limited to solenoid valve mode) ·····	
	6.5.15 Load Cell Calibration Command (CLBR)	
	6.5.16 PIO/Modbus Switching Setting (PMSL)·····	
	6.5.17 Deceleration Stop (STOP)·····	
	6.5.18 Axis operation permission (ENMV) (Servo Press Type Only)	
	6.5.19 Program Home Position Movement (PHOM) (Servo Press Type Only) ·····	
	6.5.20 Search Stop (SSTP) (Servo Press Type Only)·····	
	6.5.21 Program compulsoly finish (FPST) (Servo Press Type Only)	
	6.5.22 Program Start (PSTR) (Servo Press Type Only)	6-121
6.6	Direct Writing of Control Information (Function code 06)	
	6.6.1 Writing to Registers	
6.7	Direct Writing of Positioning Data (Function code 10)·····	
	6.7.1 Numerical Value Movement Command ·····	
	6.7.2 Writing Position Table Data	6-145

Chapter 7 Troubleshooting

7.1	Responses at Errors (Exception Responses) ······ 7-1
7.2	Notes 7-4
7.3	Countermeasure When Communication Not Well Established7-5

Chapter 8 Reference Materials

8.1	CRC Check Calculation 8-1
8.2	Configuration of Systems that Use both SIO and PIO
8.3	Regarding Option Units ······ 8-4
	8.3.1 SIO converter 8-4
	8.3.2 Controller Link Cable 8-8
	8.3.3 PLC Connection Unit (RCP6S only) ······ 8-9
Revis	sion history ······ Post-1

Safety Guide

"Safety Guide" has been written to use the machine safely and so prevent personal injury or property damage beforehand. Make sure to read it before the operation of this product.

Safety Precautions for Our Products

The common safety precautions for the use of any of our robots in each operation.

No.	Operation Description	Description
1	Model Selection	 This product has not been planned and designed for the application where high level of safety is required, so the guarantee of the protection of human life is impossible. Accordingly, do not use it in any of the following applications. 1) Medical equipment used to maintain, control or otherwise affect human life or physical health. 2) Mechanisms and machinery designed for the purpose of moving or transporting people (For vehicle, railway facility or air navigation facility) 3) Important safety parts of machinery (Safety device, etc.) Do not use the product outside the specifications. Failure to do so may considerably shorten the life of the product. Do not use it in any of the following environments. 1) Location where there is any inflammable gas, inflammable object or explosive 2) Place with potential exposure to radiation 3) Location with the ambient temperature or relative humidity exceeding the specification range 4) Location where radiant heat is added from direct sunlight or other large heat source 5) Location where there is any corrosive gas (sulfuric acid or hydrochloric acid) 7) Location exposed to significant amount of dust, salt or iron powder 8) Location subject to direct vibration or impact For an actuator used in vertical orientation, select a model which is equipped with a brake. If selecting a model with no brake, the moving part may drop when the power is turned OFF and may cause an accident such as an injury or damage on the work piece.

No.	Operation Description	Description
2	Transportation	 When carrying a heavy object, do the work with two or more persons or utilize equipment such as crane. When the work is carried out with 2 or more persons, make it clear who is to be the "leader" and who to be the "follower(s)" and communicate well with each other to ensure the safety of the workers. When in transportation, consider well about the positions to hold, weight and weight balance and pay special attention to the carried object so it would not get hit or dropped. Transport it using an appropriate transportation measure. The actuators available for transportation with a crane have eyebolts attached or there are tapped holes to attach bolts. Follow the instructions in the instruction manual for each model. Do not step or sit on the package. Do not put any heavy thing that can deform the package, on it. When using a crane capable of 1t or more of weight, have an operator who has qualifications for crane operation and sling work. When using a crane or equivalent equipments, make sure not to hang a load that weighs more than the equipment's capability limit. Use a hook that is suitable for the load. Consider the safety factor of the hook in such factors as shear strength. Do not get on the load that is hung on a crane. Do not leave a load hung up with a crane.
3	Storage and Preservation	 The storage and preservation environment conforms to the installation environment. However, especially give consideration to the prevention of condensation. Store the products with a consideration not to fall them over or drop due to an act of God such as earthquake.
4	Installation and Start	 (1) Installation of Robot Main Body and Controller, etc. Make sure to securely hold and fix the product (including the work part). A fall, drop or abnormal motion of the product may cause a damage or injury. Also, be equipped for a fall-over or drop due to an act of God such as earthquake. Do not get on or put anything on the product. Failure to do so may cause an accidental fall, injury or damage to the product due to a drop of anything, malfunction of the product, performance degradation, or shortening of its life. When using the product in any of the places specified below, provide a sufficient shield. 1) Location where electric noise is generated 2) Location with the mains or power lines passing nearby 4) Location where the product may come in contact with water, oil or chemical droplets

No.	Operation Description	Description
4	Installation and Start	 (2) Cable Wiring Use our company's genuine cables for connecting between the actuator and controller, and for the teaching tool. Do not scratch on the cable. Do not bend it forcibly. Do not pull it. Do not coil it around. Do not insert it. Do not put any heavy thing on it. Failure to do so may cause a fire, electric shock or malfunction due to leakage or continuity error. Perform the wiring for the product, after turning OFF the power to the unit, so that there is no wiring error. When the direct current power (+24V) is connected, take the great care of the directions of positive and negative poles. If the connection direction is not correct, it might cause a fire, product breakdown or malfunction. Connect the cable connector securely so that there is no disconnection or looseness. Failure to do so may cause a fire, electric shock or malfunction of the product. Never cut and/or reconnect the cables supplied with the product for the purpose of extending or shortening the cable length. Failure to do so may cause the product to malfunction or cause fire.
		 (3) Grounding The grounding operation should be performed to prevent an electric shock or electrostatic charge, enhance the noise-resistance ability and control the unnecessary electromagnetic radiation. For the ground terminal (PE) on the AC power cable of the controller and the grounding plate in the control panel, make sure for grounding work. For security grounding, it is necessary to select an appropriate wire thickness suitable for the load. Perform wiring that satisfies the specifications (electrical equipment standards and criteria). For detail, follow the description in [an instruction manual of each controller or controller built-in actuator]. Conduct functional grounding on the FG terminal for a controller supplying 24V DC or a controller built-in type actuator. In order to minimize influence to mechanical operation given by electromagnetic interference (noise) to an electrical device or insulation failure, conduct grounding on a terminal or a conductor that is electrically stable. The reference impedance should be Type D (Former Class 3, ground resistance 100Ω or less).

No.	Operation Description	Description
4	Installation and Start	 (4) Safety Measures When the work is carried out with 2 or more persons, make it clear who is to be the "leader" and who to be the "follower(s)" and communicate well with each other to ensure the safety of the workers. When the product is under operation or in the ready mode, take the safety measures (such as the installation of safety and protection fence) so that nobody can enter the area within the robot's movable range. When the robot under operation is touched, it may result in death or serious injury. Make sure to install the emergency stop circuit so that the unit can be stopped immediately in an emergency during the unit operation. Take the safety measure not to start up the unit only with the power turning ON. Failure to do so may start up the machine only with the emergency stop cancellation or recovery after the power failure. Failure to do so may result in an electric shock or injury due to unexpected power input. When the installation or adjustment operation is to be performed, give clear warnings such as "Under Operation; Do not turn ON the power!" etc. Sudden power input may cause an electric shock or injury. Take the measure so that the work part is not dropped in power failure or emergency stop. Wear protection gloves, goggle or safety shoes, as necessary, to secure safety. Do not insert a finger or object in the openings in the product. Failure to do so may cause an injury, electric shock, damage to the product or fire. When releasing the brake on a vertically oriented actuator, exercise precaution not to pinch your hand or damage the work parts with the actuator dropped by gravity.
5	Teaching	 When the work is carried out with 2 or more persons, make it clear who is to be the "leader" and who to be the "follower(s)" and communicate well with each other to ensure the safety of the workers. Perform the teaching operation from outside the safety protection fence, if possible. In the case that the operation is to be performed unavoidably inside the safety protection fence, prepare the "Stipulations for the Operation" and make sure that all the workers acknowledge and understand them well. When the operation is to be performed inside the safety protection fence, the worker should have an emergency stop switch at hand with him so that the unit can be stopped any time in an emergency. When the operation is to be performed inside the safety protection fence, in addition to the workers, arrange a watchman so that the machine can be stopped any time in an emergency. Also, keep watch on the operation so that any third person can not operate the switches carelessly. Place a sign "Under Operation" at the position easy to see. When releasing the brake on a vertically oriented actuator, exercise precaution not to pinch your hand or damage the work parts with the actuator dropped by gravity. * Safety protection Fence : In the case that there is no safety protection fence, the movable range should be indicated.

No.	Operation Description	Description
6	Trial Operation	 When the work is carried out with 2 or more persons, make it clear who is to be the "leader" and who to be the "follower(s)" and communicate well with each other to ensure the safety of the workers. After the teaching or programming operation, perform the check operation one step by one step and then shift to the automatic operation. When the check operation is to be performed inside the safety protection fence, perform the check operation using the previously specified work procedure like the teaching operation. Make sure to perform the programmed operation check at the safety speed. Failure to do so may result in an accident due to unexpected motion caused by a program error, etc. Do not touch the terminal block or any of the various setting switches in the power ON mode. Failure to do so may result in an electric shock or malfunction.
7	Automatic Operation	 Check before starting the automatic operation or rebooting after operation stop that there is nobody in the safety protection fence. Before starting automatic operation, make sure that all peripheral equipment is in an automatic-operation-ready state and there is no alarm indication. Make sure to operate automatic operation start from outside of the safety protection fence. In the case that there is any abnormal heating, smoke, offensive smell, or abnormal noise in the product, immediately stop the machine and turn OFF the power switch. Failure to do so may result in a fire or damage to the product. When a power failure occurs, turn OFF the power switch. Failure to do so may cause an injury or damage to the product, due to a sudden motion of the product in the recovery operation from the power failure.

No.	Operation Description	Description
8	Maintenance and Inspection	 When the work is carried out with 2 or more persons, make it clear who is to be the "leader" and who to be the "follower(s)" and communicate well with each other to ensure the safety of the workers. Perform the work out of the safety protection fence, if possible. In the case that the operation is to be performed unavoidably inside the safety protection fence, prepare the "Stipulations for the Operation" and make sure that all the workers acknowledge and understand them well. When the work is to be performed inside the safety protection fence, basically turn OFF the power switch. When the operation is to be performed inside the safety protection fence, the worker should have an emergency stop switch at hand with him so that the unit can be stopped any time in an emergency. When the operation is to be performed inside the safety protection fence, in addition to the workers, arrange a watchman so that the machine can be stopped any time in an emergency. Also, keep watch on the operation so that any third person can not operate the switches carelessly. Place a sign "Under Operation" at the position easy to see. For the grease for the guide or ball screw, use appropriate grease according to the instruction manual for each model. Do not perform the dielectric strength test. Failure to do so may result in a damage to the product. When releasing the brake on a vertically oriented actuator, exercise precaution not to pinch your hand or damage the work parts with the actuator dropped by gravity. The slider or rod may get misaligned OFF the stop position if the servo is turned OFF. Be careful not to get injured or damaged due to an unnecessary operation. Pay attention not to lose the removed cover or screws, and make sure to put the product back to the original condition after maintenance and inspection works. Use in incomplete condition may cause damage to the product or an injury. * Safety protection Fen
9	Modification and Dismantle	 Do not modify, disassemble, assemble or use of maintenance parts not specified based at your own discretion.
10	Disposal	 When the product becomes no longer usable or necessary, dispose of it properly as an industrial waste. When removing the actuator for disposal, pay attention to drop of components when detaching screws. Do not put the product in a fire when disposing of it. The product may burst or generate toxic gases.
11	Other	 Do not come close to the product or the harnesses if you are a person who requires a support of medical devices such as a pacemaker. Doing so may affect the performance of your medical device. See Overseas Specifications Compliance Manual to check whether complies if necessary. For the handling of actuators and controllers, follow the dedicated instruction manual of each unit to ensure the safety.

Alert Indication

The safety precautions are divided into "Danger", "Warning", "Caution" and "Notice" according to the warning level, as follows, and described in the instruction manual for each model.

Level	Degree of Danger and Damage S		/mbol
Danger	This indicates an imminently hazardous situation which, if the product is not handled correctly, will result in death or serious injury.		Danger
Warning	This indicates a potentially hazardous situation which, if the product is not handled correctly, could result in death or serious injury.	\triangle	Warning
Caution	This indicates a potentially hazardous situation which, if the product is not handled correctly, may result in minor injury or property damage.		Caution
Notice	This indicates lower possibility for the injury, but should be kept to use this product properly.		Notice

Precautions for Handling

The explanations provided in this manual are limited to procedures of serial communication. For other specifications, such as control, installation and connection, please refer to the instruction manual of each controller.

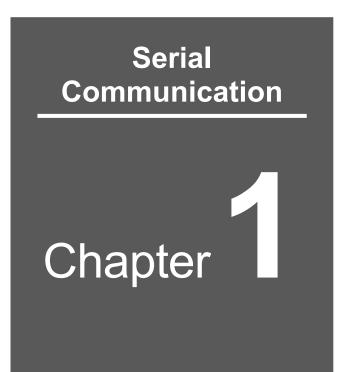
- Make sure to follow the usage condition, environment and specifications ranges of the product.
 Not doing so may cause a drop in performance or malfunction of the product.
- 2. If any address or function not defined in this specification is sent to an RC controller, the controller may not operate properly or it may implement unintended movements. Do not send any function or address not specified herein.
- 3. RC controllers are designed in such a way that once the controller detects a break (space) signal of 150ms or longer via its SIO port, it will automatically switch the baud rate to 9600bps.

On some PCs, the transmission line remains in the break (space) signal transmission mode while the communication port is closed. Exercise caution if one of these PCs is used as the host device, because the baud rate in your RC controller may have been changed to 9600 bps.

- 4. Set the baud rate and other parameters using IAI's PC software or other dedicated teaching tool.
- 5. If the controller is used in a place meeting any of the following conditions, provide sufficient shielding measures. If sufficient actions are not taken, the controller may malfunction:
 - 1) Where large current or high magnetic field generates
 - 2) Where arc discharge occurs due to welding, etc.
 - 3) Where noise generates due to electrostatic, etc.
 - 4) Where the controller may be exposed to radiation

- 6. When performing wiring tasks and inserting/extracting connectors in/from sockets, make sure that the power supplies of the host and each RC controller are turned OFF. Carrying out such tasks with the power supplies turned ON may result in electric shock and/or damage to parts.
- 7. In order to prevent malfunctions due to noise, wire the communication cables such that the communication cables are isolated from power lines and other control wiring.
- 8. In order to prevent malfunctions due to noise, make sure to take noise prevention measures on the electric equipment in the same power supply circuit or within the same device.
- 9. The alarm codes output to 0503_{H} and 9002_{H} in Modbus address include those in message level.

There are some types in the IAI controllers that do no issue the message level alarms. In case it is necessary to replace a controller that does not issue the message level alarms with one that issues, add the operation patterns at the issuance of a message level alarm in the system that requires changing the operation pattern for each alarm level. (Example: Replacing from PCON-C to PCON-CB)


For the details of the alarm levels to be issued, refer to [The troubleshooting in the instruction manual of each controller].

10. About Battery-less Absolute Type Stepping Motor Mounted Actuator

Note 1) and 2) should be applied to encoders with resolution of 800 pulses.

- Position adjustment operation (Excitation detection) will be conducted only in the first servoon after the power is turned on due. The maximum amount of movement in the position adjustment operation is 0.02 × lead length [mm].
- 2) Home-return complete signal "HEND" and limit switch output signal "LS" are not output until the first servo-on after the power is turned on.
- An error output will not be issued when the first servo-on is held outside the soft limit range.
 Soft limit monitoring starts after moved into the range.
- 4) Make sure to perform the home-return operation (absolute reset) when the motor unit is taken off the actuator for such a purpose as motor replacement work.
- 11. For Position Data editing of RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC, the teaching tool such as PC software needs to be connected to the teaching port on the RCP6S actuator.

Connecting to ports other than this teaching port cannot access without the connection to this teaching tool, and "0" will be read even the reading query is executed.

Communication Overview

1.1 Overview (Modbus)······1-1

1.1 Overview (Modbus)

The single-axis CON system controllers that control the IAI actuators (hereinafter called as a controller) are equipped with the start-stop synchronized serial interface complied with EIA RS485 as an interface to a host (upper level controller). In this way, it is possible to build an SIO link system that can connect and control up to 16 axes of slaves (RC controllers) ^(Note 1). In addition to sending commands to each axis individually, it is also possible to broadcast the same command to all slaves at the same time.

Modbus Protocol is employed as the communication protocol, and it is possible to send commands from a host as well as read internal information.

Modbus Protocol is a communication protocol that was developed by Modicon Inc. (AEG Schneider Automation International S.A.S.) for PLC. The details of Modbus Protocol specifications are described in the protocol specifications manual (PI-MBUS-300 Rev. J). What is defined in Modbus Protocol is the communication protocol only. The physical layers of such as a communication device are not specified.

Since the specifications of Modbus Protocol are disclosed globally, software development can be carried out easily.

Note 1 Note that it is only possible to connect RC series devices on the same network; old RC series (protocol T) or other devices cannot be connected.

There are 2 types of serial transmission modes: ASCII mode (where 1-byte (8 bits) data is Converted to ASCII code (2 characters) and sent) and RTU mode (where 1-byte (8 bits) data is sent as is). RC controllers identify the transmission mode on a packet-by-packet basis, thus making it possible to receive in both modes (Note 2).

Set the ROBONET RS-485 to the SIO through mode. Refer to the [Separate ROBONET Operation Manual.]

Note 2 Make sure to use the same serial transmission mode for all devices on one network: it is not allowed to use both modes.

Operational controller

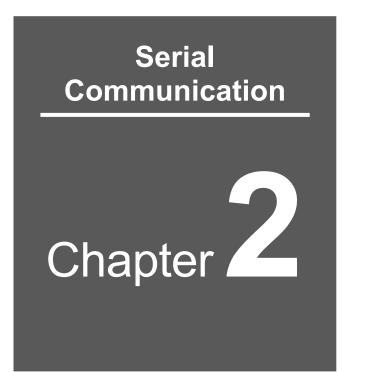
Series name	Туре	Remarks
ERC2	ERC2 -	
ERC3	-	V0002 or later
PCON	C/CG/CF/CY/PL/PO/SE/ CA/CFA/CB/CFB/CGB/CGFB//CBP/CGBP CYB/PLB/POB	
ACON	C/CG/CY/PL/PO/SE/ CA/CB/CGB/CYB/PLB/POB	
DCON	CA/CB/CGB/CYB/PLB/POB	
SCON	C/CA/CAL/CGAL/CB/CGB/ Servo Press Type	
ROBONET	RS-485	When RTU mode and SIO through mode
RCP6S	RCP6S、RCM-P6PC, RCM-P6AC、 RCM-P6DC	When using PLC connection unit (RTU Mode)
RCON	GW/GWG	RTU,/TCP

Table 1.1-1 Operational controller list

* For details of RCON, refer to [RCON Modbus Specification Manual (ME0413)].

Caution

 Abbreviation for Type for Controllers in This Manual Some controller types may not be able to use some features and commands (queries) explained in this instruction manual. In case there is such restrictions, the type names that are applicable and those that are not applicable should be described. As Safety Category (G) Type is the same as the standard type in the way of applicable


and not applicable, abbreviation should be as described below.

 Model
 Abbreviation

 C/CG
 C

 CAL/CGAL
 CAL

C/CG	С
CAL/CGAL	CAL
CB/CGB	СВ
CFA/CGFA	CFA
CFB/CGFB	CFB
CBP/CGBP	CBP
LC/LCG	LC

Confirmation of Specifications

2.1	Specifications of Serial Communication (Modbus)2-1		
	2.1.1	Modbus Communication specifications ······2-1	
	2.1.2	Communication Mode 2-2	
	2.1.3	Transmission mode 2-3	

2.1 Specifications of Serial Communication (Modbus)

2.1.1 Modbus Communication specifications

Modbus Communication specifications are as described below.

Item	specifications
Interface	Conforming to EIA-485 (RS-485)
Communication method	Half-duplex communication
Maximum total extension distance	100m
Synchronization method	Start-stop synchronization
Connection pattern	1-to-N unbalanced bus connection (1 \leq N \leq 16)
Transmission mode	RTU/ASCII (auto-detect) (Note 1)
Baud rate (bps)	Selectable from the following speeds via parameter setting: 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400
Bit length	8 bits
Stop bit	1 bit
Parity	None

Note 1 ROBONET and RCP6S Series + PLC Connection Unit are not applicable for ASCII Mode.

(RCP6S Series: RCP6S, RCM-P6PC, RCM-P6AC, RCM-P6DC)

2.1.2 Communication Mode

In the Modbus protocol, communication takes place in a single-master/multiple-slave configuration. In this communication, only the master (the PLC host in the example below) issues a query to a specified slave (the RC controller connected to axis C in the example below). When the specified slave receives this query, it executes the function specified in the query, and then returns a response message (one communication cycle is completed with this operation).

The query message format consists of the slave "address", function code" defining the content of request, "data", and "error check".

The response message format consists of the function code confirming the content of request, data, and error check. Following figure shows the query message format and response message configuration. Communication Mode are as described below.

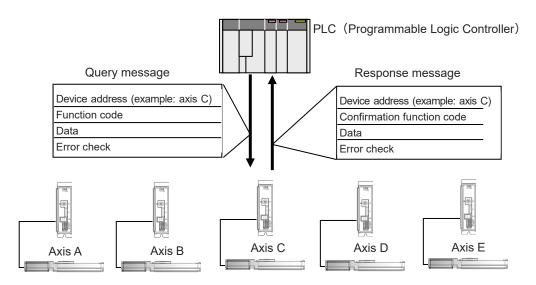


Fig. 2.1-1 Transmission Structure of Query and Response

2.1.3 Transmission mode

There are two types of modes, RTU (Remote Terminal Unit) Mode and ASCII (American Standard Code for Information Interchange) Mode, in the serial transmission modes. Either of them can be selected for communication. However, the mode has to be the same for all devices in one network.

In RTU Mode, 1 byte (8 bits) data is to be transmitted directly. In ASCII Mode, 1 byte (8 bits) data is to be transmitted with it converted into 2 characters of ASCII Code. Therefore, RTU Mode can be defined more efficient in transmission than ASCII Mode.

The check algorithm in the error check field differs in each serial transmission mode. RTU Mode adopts CRC (Cyclical Redundancy Check) System while ASCII Mode adopts LRC (Longitudinal Redundancy Check) System.

Refer to:

- RTU mode : [Chapter 5 Modbus/RTU]
- ASCII mode : [Chapter 6 Modbus/ASCII]

for details regarding commands in each transmission mode.

Serial Communication

Preparation for Communication

3.1	Syste	System configuration ····································	
	3.1.1	In Case the Master (host) Uses RS-232C Interface ·············3-1	
	3.1.2	In Case the Master (host) Uses RS-485 Interface	
3.2	Wirin	iring method ······3-3	
	3.2.1	In Case the Master (host) Uses RS-232C Interface wiring	
	3.2.2	In Case the Master (host) Uses RS-485 Interface wiring	
3.3	Pin Assignment of Serial Communication Connector in PLC		
	(Refe	rence)	
3.4	Vario	Various Setting before Starting Communication ·············3-7	
3.5	Settir	Setting Axis Numbers ······3-8	
	3.5.1	For Controller Equipped with Rotary Switch	
	3.5.2	For Controller Not Equipped with Rotary Switch	
3.6 Setting Controller Communication Spee		Controller Communication Speed ·······3-11	
	3.6.1	Setting Wiring and Hardware for Each System	
	3.6.2	Setting Communication Speed ···································	

3.1 System configuration

3.1.1 In Case the Master (host) Uses RS-232C Interface

Below shows an example of a system structure when an upper level (host) is RS-232C interface.

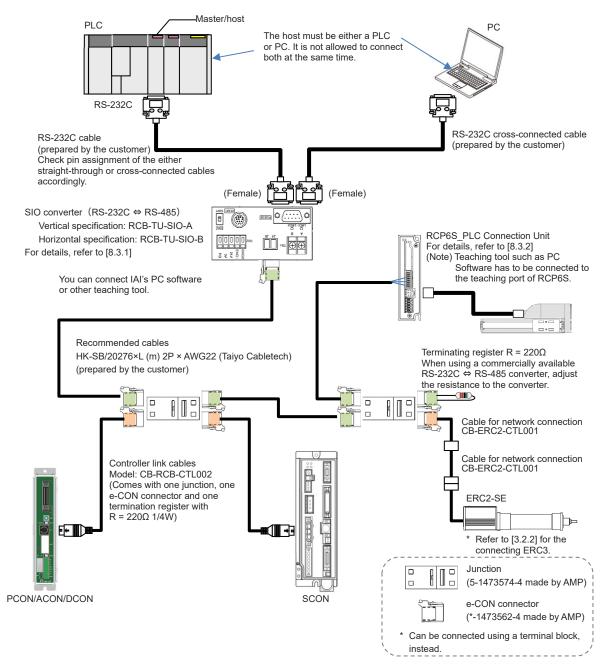


Fig. 3.1-1 Example System Configuration (Master: RS-232C Interface)

- * Make sure to use the common 0V line of the 24V power supply for each controller (other than SCON).
- * For ROBONET connection, refer to the [Separate ROBONET Operation Manual (ME0208)].

3.1.2 In Case the Master (host) Uses RS-485 Interface

Here shows how to layout cables when an upper level (host) is RS-485 interface.

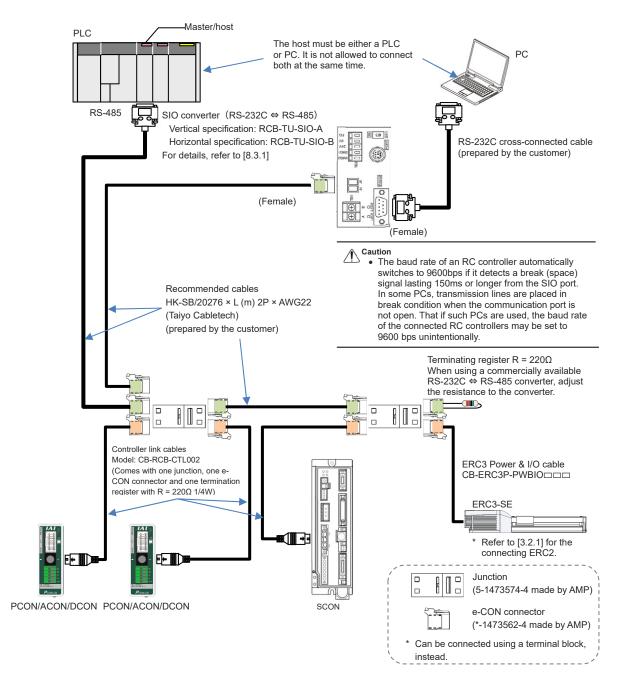


Fig. 3.1-2 Example System Configuration (Master: RS-485 Interface)

- * Make sure to use the common 0V line of the 24V power supply for each controller (other than SCON).
- * For ROBONET connection, refer to the [Separate ROBONET Instruction Manual (ME0208)].

Wiring method 3.2

3.2.1 In Case the Master (host) Uses RS-232C Interface wiring

Here shows how to layout cables when an upper level (host) is RS-232C interface.

Example of Cable Layout between Host and SIO Converter

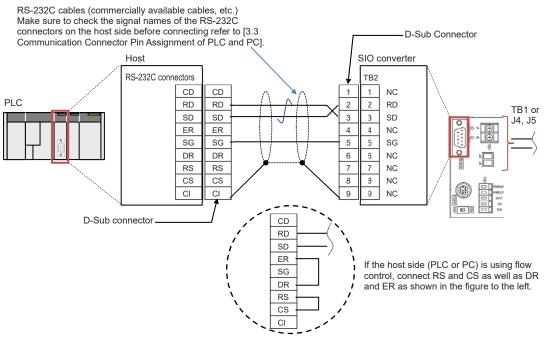
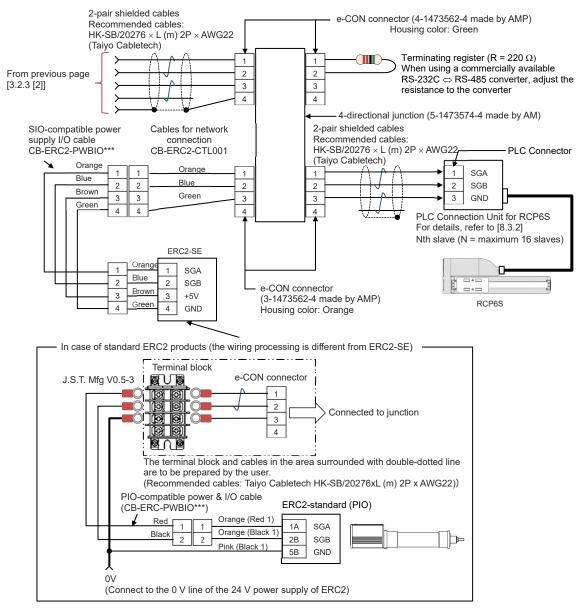



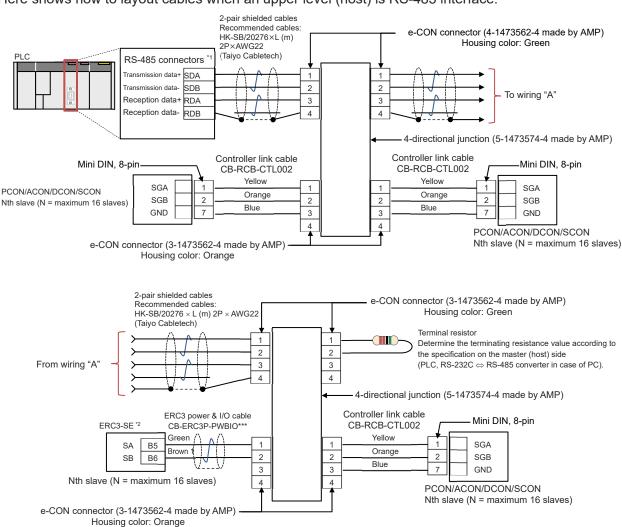
Fig. 3.2-1 Example of Cable Layout between Host and SIO Converter

J4 or J5 e-CON connector e-CON connector (4-1473562-4 made by AMP) 2-pair shielded cables Recommended cables: Housing color: Green SIO converter HK-SB/20276×L (m) 2P×AWG22 (Taiyo Cabletech) 1 1 2 2 2 For the wiring method, refer to [3.2.1 [3]] 3 3 3 4 4 4 For the wiring method, refer to [3.2.1 [1]] 4-directional junction (5-1473574-4 made by AMP) × • • Controller link cable Controller link cable Mini DIN, 8-pin Mini DIN, 8-pin CB-RCB-CTL002 CB-RCB-CTL002 Yellow Yellow SGA SGA PCON/ACON/DCON/SCON 1 Orange Orange SGB 2 2 2 SGB Nth slave 2 Blue Blue (N = maximum 16 slaves) GND 3 3 7 GND 4 4 PCON/ACON/DCON/SCON Nth slave (N = maximum 16 slaves) e-CON connector (3-1473562-4 made by AMP) Housing color: Green

Fig. 3.2-2 Example of Cable Layout between SIO Converter and 4-Way Junction

[2] Example of Cable Layout between SIO Converter and 4-Way Junction

[3] Example of Cable Layout between 4-Way Junction and Controller


Fig. 3.2-3 Example of Cable Layout between 4-Way Junction and Controller

Caution

- Make sure to use the common 0V line of the 24V power supply for each controller (other than SCON).
- For ROBONET connection, refer to the [Separate ROBONET Instruction Manual (ME0208)].

3.2.2 In Case the Master (host) Uses RS-485 Interface wiring

Here shows how to layout cables when an upper level (host) is RS-485 interface.

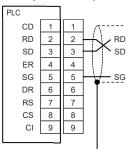
*1 Please note that some PLCs are configured such that SDA is the negative terminal of the transmission data and SDB is the positive terminal (in this case, RDA is the negative terminal of the reception data and RDB is the positive terminal).

Refer to [3.3 Pin Assignment of Serial Communication Connector in PLC (Reference)] for pin assignment on the PLC side.

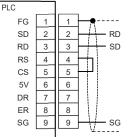
- *2 Connection of ERC3-SE
 - 1) A cable (CB-ERC3-PMB10) is required separately.
 - 2) MEC Mode Type cannot be connected.
 - 3) Connection cannot be established via PIO Converter.

Caution

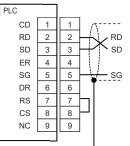
- Make sure to use the common 0V line of the 24V power supply for each controller (other than SCON).
- For ROBONET connection, refer to the [Separate ROBONET Instruction Manual (ME0208)].


Fig. 3.2-4 Example of Cable Layout when an upper level (host) is RS-485 interface.

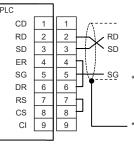
3.3 Pin Assignment of Serial Communication Connector in PLC (Reference)


Below shows the pin assignment of a communication connector for the serial communication unit of PLC provided by each company. Refer to [Instruction Manual for (Serial) Communication Unit of Each Company] for details of wiring.

[1] RS-232C Pin Assignment


In case of PLC made by Mitsubishi: QJ71C24 RS-232C D-sub 9-pin connector (male: cable side)

One end of the shielded cable shall be connected to a connector housing or grounded. In case of PLC made by Omron: CJ1W-SCB or SCU RS-232C D-sub 9-pin connector (male: cable side)



In case of PLC made by Keyence: KV-L20R RS-232C D-sub 9-pin connector (female: cable side)

 One end of the shielded cable shall be connected to a connector housing or grounded.

In case of RS-232C D-sub 9-pin connector (female: cable side)

To use flow control, connect RS and CS as well as DR and ER.

One end of the shielded cable shall be connected to a connector housing or grounded.

[2] RS-485 Pin Assignment

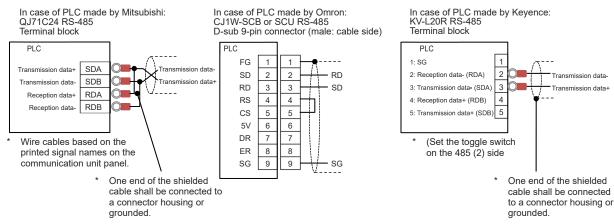


Fig. 3.3-2 Pin Assignment for Serial Communication Unit in RS-485

3.4 Various Setting before Starting Communication

Here shows the communication flow of communication.

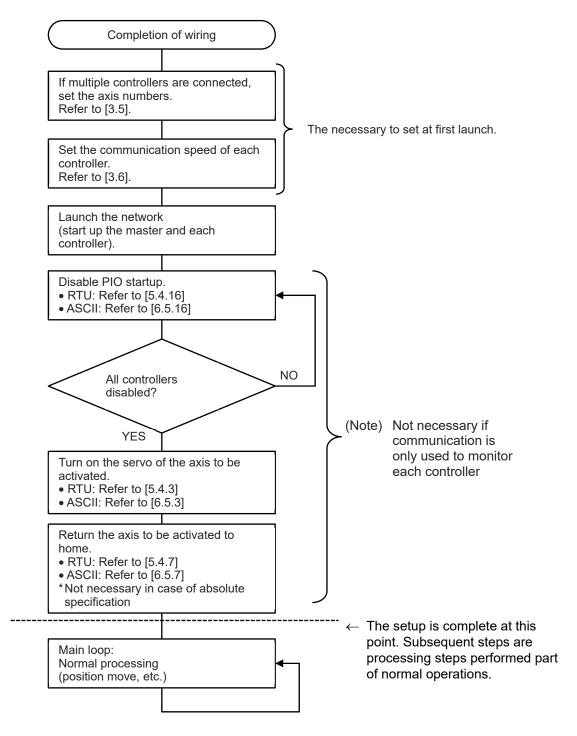
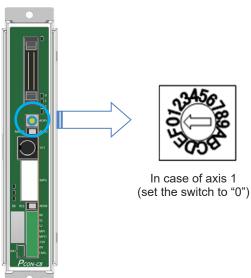


Fig. 3.4-1 Communication flow

3.5 Setting Axis Numbers

Set up the axis number for a controller (slave).

As it is different for different controllers how to set it up, check the method suitable for an applicable controller.


3.5.1 For Controller Equipped with Rotary Switch

Set an axis number for each RC controller on the SIO link using hexadecimal digits from 0 to F_{H} , which is the number for the 16th axis.

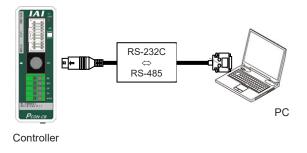
If the panel surface of an RC controller has an axis number setting switch (ADRS) (PCON-C/CG/CF/CA/CFA/CB/CBP/CFB/CGBP/CGFB/, ACON-C/CG/CA/CB/CGB,

DCON-CA/CB/CGB, SCON-C/CA/CB/CGB, ROBONET), adjust the arrow to point to the axis number using a flat bladed screwdriver.

Note Pay attention to the controller axis numbers so they would not be duplicated with another controller or device.

In case of axis 2 (set the switch to "1")

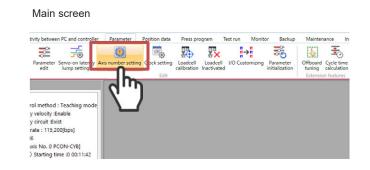
In case of axis 11 (set the switch to "A")

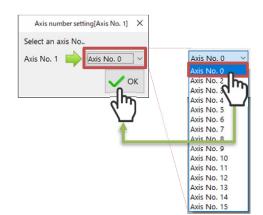

Fig. 3.5-1 Setup of Controller Equipped with Rotary Switch

3.5.2 For Controller Not Equipped with Rotary Switch

Any controller not equipped with the axis number setup switch described in [3.5.1 For Controller Equipped with Rotary Switch] is to be connected one by one to a teaching tool such as the PC teaching software to set up the axis number.

Here, introduces how to establish the setting in the PC teaching software IA-OS. For the setting from a teaching pendant, refer to [an instruction manual for each model (TB-03/02/01, CON-PTA, CON-PT, CON-T, RCM-E and RCM-T)].


- Procedure
- 1. Connect the communication cable for PC to the SIO connector of the controller for which an axis number is to be set.


- 2. Startup IA-OS and click Serial Communication (USB/TP Port) in the communication system select window to start communication with a controller.
 - * A communication port is to be selected for communication after this.

3. Once communication is established, select Parameter in the menu in the main window and click Axis Number Setup shown in the ribbon.

4. As the axis number setup window appears, select an "Axis Number" that is required to be selected from the pull-down menu, and click ✓ ok.

5. As a warning window appears, click 🗸 🗸

3.6 Setting Controller Communication Speed

In order to perform communication, the communication speed of the host side and each RC controller must match.

Set the communication speed according to the procedure explained in [3.6.1] and [3.6.2]. For the settings on the host side, refer to the [instruction manual for your host equipment].

3.6.1 Setting Wiring and Hardware for Each System

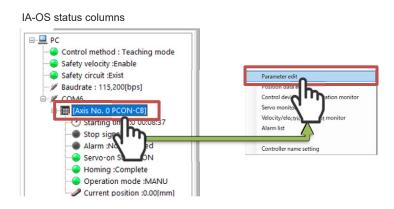
[1] In case of using a PC as the master (host) controller

It is possible to make settings without changing the current connection. For those RC controllers that possess the operation mode setting switch, set the switch to MANU.

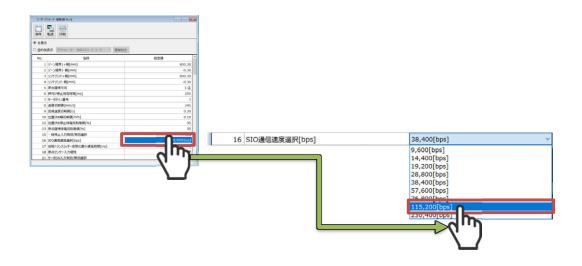
[2] In case a PLC is used as the master (host) controller connected via RS-232C Connect a PC as master (host) controller instead of the PLC (refer to [Figure 3.1-1]). At this point, disconnect the PLC from the SIO converter and connect the PC to the teaching port (Mini DIN8 pin connector) of the SIO converter refer to [3.1.1] using the cable supplied with the PC software.

For those RC controllers that possess the operation mode setting switch, set the switch to MANU.

[3] In case a PLC is used as the master (host) controller connected via RS-485 Connect a PC directly to each RC controller in the same way as for setting axis numbers. For those RC controllers that possess the operation mode setting switch, set the switch to MANU.

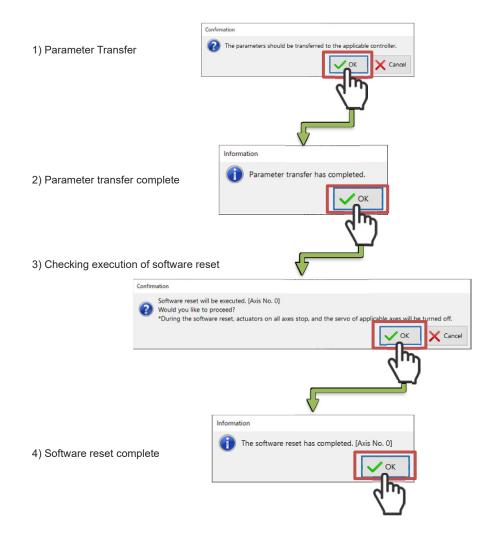

[4] When a ROBONET is connected

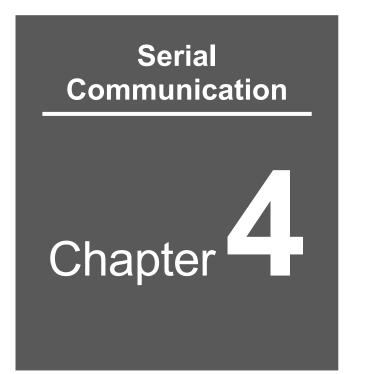
To set up your ROBONET, connect the cable supplied with your PC software to the teaching port on the GateWayR unit. Set the MODE selector switch on the GateWayR unit to MANU. Set an axis number for each RC controller on the SIO link using hexadecimal digits from 0 to F_{H} , which is the number for the 16th axis.


3.6.2 Setting Communication Speed

Set the communication speed using the following procedure. (Example of IA-OS) Note On ROBONET controllers, the baud rate is set using the gateway parameter setting tool. For details, refer to the [Separate ROBONET Instruction Manual (ME0208).]

1. While in communication, right-click an axis number in the controller to change parameters in the IA-OS status columns ("Axis No. 0 PCON-CB" in the example), and click Edit Parameter.


2. The user parameter edit window should get displayed. Click the column of the setting value for Parameter No. 16 "SIO Baud Rate Select [bps]" and select a baud rate that is required to set from the pull-down menu.


3. Once the baud rate is selected, click $\boxed{\mathbb{F}_{\text{ransfer}}}$ on the top left of the user parameter edit window.

4. Proceed the operation for parameter transfer and reboot of controller in the process below.

That is all for the parameter setting.

Communication

4.1	Message Transmission Timing ······4-1
4.2	Timeout and Retry4-2
4.3	Internal Addresses and Data Structure of RC Controller \cdots 4-3
	4.3.1 Structure of Modbus Registers
	4.3.2 Details of Modbus Registers
	4.3.3 Structure of Modbus Status Registers
	4.3.4 Detail of Modbus Status Registers

4.1 Message Transmission Timing

The basic transmission control procedure consists of the master sending a query, and the RC controller that received the query sending a response, which are considered one unit.

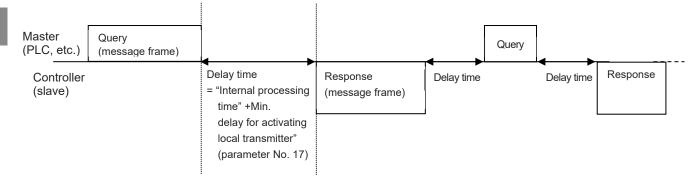


Fig. 4.1-1 Basic transmission procedure

The delay time after a query message is received until a response message is sent is calculated as the total sum of parameter No. 17 "Min. delay for activating local transmitter" (default value 5ms) and the internal processing time (refer to the table below).

After receiving a query message, the RC controller waits for the "min. delay for activating local transmitter". Once this delay time elapses, the controller will activate the transmitter and start sending a response message. The master must enable the receive function of its own station within the aforementioned delay time after sending a query message.

RC controller gets ready for the next query reception in 1ms after a response or a message has sent out.

Item	Time [ms]
Read/write a register other than those in the low-speed memory area	max.1
Position data (1 position) Read	max.4
Position data (1 position) Write	max.15
Position data (1 position) Read/write	max.18
Position data (9 positions) Read	max.9
Position data (9 positions) Write	max.90
Position data (9 positions) Read/write	max.98

Table. 4.1-1 Internal	processing time
-----------------------	-----------------

Note Processing duration may differ depending on the category to access and the controller type.

4.2 Timeout and Retry

After sending a query, the host waits for a response from the controller (except when the query that has been sent is a broadcast query).

If the elapsed time after sending a command until a response is received exceeds the timeout value [Tout], the host may send the command again to reestablish communication. If the number of retries exceeds three times, it means that an irremediable communication error has occurred.

The method for calculating the timeout value [Tout] is explained below.

1. Timeout value [Tout]

Tout = To + α + (10 × Bprt / Kbr) [ms]

- To: Internal processing time* × Safety factor 3
- a: Min. delay for activating local transmitter [ms]

(default value of parameter No. 17 is 5ms)

Kbr: Baud rate [kbps]

Bprt: Response message bytes + 8

The process of the basic transmission control should be the transmission of that the queries from the master and the response from the received RC controller as defined as one unit.

Caution

• The internal processing time varies depending on the category of the register to be accessed. The processing time required for each action is listed in the table below.

Item	Time [ms]	
Read/write a register other than those in the low-speed memory area	max.1	
Position data (1 position) Read	max.4	
Position data (1 position) Write	max.15	
Position data (1 position) Read/write	max.18	
Position data (9 positions) Read	max.9	
Position data (9 positions) Write	max.90	
Position data (9 positions) Read/write	max.98	

2. Number of Retries [Nrt]

Nrt = 3

* Note that setting of the number of retries is mandatory

4.3 Internal Addresses and Data Structure of RC Controller

The memory area in your RC controller consists of the Modbus register area read/written in units of words and the Modbus status are written in units of bits (coils).

Mamanyaraa	Access		Function		
Memory area	unit	Address range	Code (Note)	Function	
	Word	0500 to 9908 _H	03н	Read holding registers	
Modbus register			06н	Write holding registers	
Refer to [4.3.1] and [4.3.2]			10 _н	Write multiple holding registers at the same time	
Modbus status Refer to [4.3.3] and [4.3.4]	Bit	0100 to 043Fн	05н	Write coils	

Table 4.3-1 Memory Domains and Applicable Function Code

Note Function codes explained in this manual.

4.3.1 Structure of Modbus Registers

The layout of the Modbus registers is shown below.

	Table 4.3-2 Structure of Modbus Registers
0000 _H	(Reserved for system) *1
0500 _⊦ ∂ 0505⊦	Detailed information of the alarm detected lately
	(Reserved for system) *1
0D00 _H	I/O control information registers
	(Reserved for system) *1
1000 _⊦ 2 3FFF _⊦	Position table information "low-speed memory area" * SCON for servo-pressing and RCP6S ^(Note 1) series not applicable
	(Reserved for system) ^{*1}
8400 _H ∠ 842E _H	Maintenance information * Refer to section for the maintenance information in the following page for the applicable models.
	(Reserved for system) *1
9000 _⊦ ∂ 9015⊦	Controller monitor information registers
	(Reserved for system) *1
9800 _H	Position command registers
	(Reserved for system) *1
9900 _⊦ 2 9908 _⊦	Numerical command registers
$FFFF_{H}$	(Reserved for system) ^{*1}

*1 Areas reserved for the system cannot be used for communication. Note 1 RCP6S Series: RCP6S, RCM-P6PC, RCM-P6AC, RCM-P6DC

4.3.2 Details of Modbus Registers

Address		Benediction		Question	Reference	
[HEX]	Area name		Description	Symbol	RTU	ASCII
0000 to 04FF	Reserved for system					
0500		Alarm detail	code	ALA0	5.3.2	6.4.2
0501	Detailed information	Alarm addres	S	ALA0	5.3.2	6.4.2
0502	of the alarm	Always "0"		-		
0503	detected lately	Alarm code		ALC0	5.3.2	6.4.2
0504	latory	Alarm occurr	ence time	ALT0	5.3.2	6.4.2
0506 to 0CFF	Reserved for system					
0D00		Device contro	ol register 1	DRG1	4.3.2 [5]	4.3.2 [5]
0D01	I/O control	Device contro	ol register 2	DRG2	4.3.2 [6]	4.3.2 [6]
0D03	information category	Position num (Servo Press	than Servo Press Type) ber specification register Type) nber specification register	POSR	4.3.2 [7]	4.3.2 [7]
0D04 to 0FFF	Reserved for system					
1000 to 3FFF (Note 2)		Offset [HEX]				
		+0000 _H	Target position	PCMD		
		+0002 _H	Positioning band	INP		
		+0004 _H	Speed command	VCMD		
	Position table	+0006 _H	Individual zone boundary +	ZNMP		
	information (low-speed	+0008 _H	Individual zone boundary -	ZNLP	F 2 2	642
	memory area)	+000A _H	Acceleration command	ACMD	5.3.3	6.4.3
* Detailed		+000B _H	Deceleration command	DCMD		
addresses can be		+000C _H	Push-current limiting value	PPOW		
calculated		+000D _H	Load current threshold	LPOW		
using the formula to		+000E _H	Control flag specification	CTLF		
the right. $ ightarrow$	* Address = 10	00 _H + (16 × Pc	osition No.) + Offset			
4000 to 83FF	Reserved for system					
8400 to 8401		Total moving	count (Note 1)	TLMC	5.3.4	6.4.4
8402 to 8403		Total moving	distance (Note 1)	ODOM	5.3.5	6.4.5
841E	Maintenance	Current time	(SCON-CA/CAL/CB only)	TIMN	5.3.6	6.4.6
8420	information (models		CFA/CB/CFB only)	TIMN	5.3.6	6.4.6
8422	applicable to calendar function		B, DCON-CA/CB only)	TIMN	5.3.6	6.4.6
842A	function only)	only)	SCON-CB [400W or more]	TFAN	5.3.7	6.4.7
842E		Total FAN dri (PCON-CFA/		TFAN	5.3.7	6.4.7
8430 to 8FFF	Reserved for system					

The layout of the Modbus Registers is shown below.

Note 1 PCON-CA/CFA/CB/CFB/CBP/CYB/PLB/POB, ACON-CA/CB/CYB/PLB/POB,

DCON-CA/CB/CYB/PLB/POB, SCON-CA/CAL/CB, ERC3, RCM-P6PC, RCM-P6AC, RCM-P6DC only Note 2 SCON for servo-pressing, RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC not applicable

Address	A	Description	Symbol	Reference		
[HEX]	Area name	Description		RTU	ASCII	
9000 to 9001		Current position register	PNOW	5.3.8	6.4.8	
9002		Present alarm code register	ALMC	5.3.9	6.4.9	
9003	O	Input port register	DIPM	5.3.10	6.4.10	
9004	Controller monitor	Output port register	DOPM	5.3.11	6.4.11	
9005	information	Device status 1 register	DSS1	5.3.12	6.4.12	
9006	category	Device status 2 register	DSS2	5.3.13	6.4.13	
9007		Expansion device status register	DSSE	5.3.14	6.4.14	
9008 to 9009		System status register	STAT	5.3.15	6.4.15	
900A to 900B		Current speed monitor register	VNOW	5.3.16	6.4.16	
900C to 900D		Current ampere monitor register	CNOW	5.3.17	6.4.17	
900E to 900F		Deviation monitor register	DEVI	5.3.18	6.4.18	
9010 to 9011	Controller	System timer register	STIM	5.3.19	6.4.19	
9012	monitor	Special input port register	SIPM	5.3.20	6.4.20	
9013	information category	Zone status register	ZONS	5.3.21	6.4.21	
9014		(Other types than Servo Press Type) Positioning complete position No. register (Servo Press Type) Executed program No. register	POSS	5.3.22	6.4.22	
9015		Expansion System status register	SSSE	5.3.23	6.4.23	
9016 to 901D	Reserved for					
901E to 9001F	system Controller monitor information category	Current load (SCON-CA/CB, PCON-CBP only)	FBFC	5.3.24	6.4.24	
9020 to 9021	Controller	Overload level monitor	OLLV	5.3.25	6.4.25	
9022	monitor	Press program alarm code	ALMP	5.3.26	6.4.26	
9023	information category	Press program alarm generated program No.	ALMP	5.3.27	6.4.27	
9024	(Servo Press	Press program status register	PPST	5.3.28	6.4.28	
9025	Type only)	Press program judgement status register	PPJD	5.3.29	6.4.29	
9026 to 97FF	Reserved for system					
9800	Position command category	Position movement command register	POSR	4.3.2 [7]	4.3.2 [7]	
9801 to 98FF	Reserved for system					
9900 to 9901		Target position coordinate specification register	PCMD			
9902 to 9903	Numerical	Positioning band specification register	INP			
9904 to 9905	value	Speed specification register	VCMD	5.6	6.7	
9906	command category	Acceleration/deceleration speed specification register	ACMD	0.0	0.1	
9907		Push-current limiting value	PPOW			
9908	1	Control flag specification register	CTLF			
9909 to FFFF	Reserved for system					

l

Bit	Symbol	Name	Function
15	-	Alarm detail code 32768	It shows the alarm detail code numbers.
14	-	Alarm detail code 16384	It is output when an alarm is issued that possesses an alarm detail code. It shows " $0_{\rm H}$ " when either there is no alarm
13	-	Alarm detail code 8192	generated or an alarm is generated but it possesses no alarm detail code.
12	-	Alarm detail code 4096	alarm detall code.
11	-	Alarm detail code 2048	Alarm detail codes are read out in binary codes. Alarm detail
10	-	Alarm detail code 1024	Check in the [Operation manual for the controller Troubleshooting section] for the content of an alarm detail
9	-	Alarm detail code 512	code as well as an alarm code.
8	-	Alarm detail code 256	
7	-	Alarm detail code 128	
6	-	Alarm detail code 64	
5	-	Alarm detail code 32	
4	-	Alarm detail code 16	
3	-	Alarm detail code 8	
2	-	Alarm detail code 4	
1	-	Alarm detail code 2	
0	-	Alarm detail code 1	

[1] Data of alarm detail code (Address = 0500_{H}) (ALA0)

[2] Data of alarm address (Address = 0501_{H}) (ALA0)

Bit	Symbol	Name	Function
15	-	Alarm address 32768	It shows the alarm address.
14	-	Alarm address 16384	The stored virtual address is output when a value stored in the virtual domain is the cause of the generated alarm. It
13	-	Alarm address 8192	shows "FFFF _H " when either there is no alarm generated or a_{H}
12	-	Alarm address 4096	an alarm is generated but the virtual domain is not the cause of it.
11	-	Alarm address 2048	Alarm address are read out in hinary adds
10	-	Alarm address 1024	Alarm address are read out in binary codes.
9	-	Alarm address 512	
8	-	Alarm address 256	
7	-	Alarm address 128	
6	-	Alarm address 64	
5	-	Alarm address 32	
4	-	Alarm address 16	
3	-	Alarm address 8	
2	-	Alarm address 4	
1	-	Alarm address 2	
0	-	Alarm address 1	

Bit	Symbol	Name	Function			
15	-	Alarm code 32768	It shows the alarm code numbers of each level (cold start,			
14	-	Alarm code 16384	operation cancellation, message). It is output when an alarm is issued. When any alarm is not			
13	-	Alarm code 8192	issued, it is "0 _H ".			
12	-	Alarm code 4096	Alarm code are read out in binary codes. For the detail of an alarm code, refer to the [instruction			
11	-	Alarm code 2048	manual of each controller].			
10	-	Alarm code 1024	(Note) There some controllers that do not issue the message			
9	-	Alarm code 512	level alarms. For more details, refer to the			
8	-	Alarm code 256	[troubleshooting of instruction manual of each controller]			
7	-	Alarm code 128	- Reference			
6	-	Alarm code 64	If changing from a controller that does not issue the			
5	-	Alarm code 32	message level alarms from one which does (Example PCON-C \Rightarrow PCON-CA), consider the operation			
4	-	Alarm code 16	patterns when the message level alarms are issued.			
3	-	Alarm code 8				
2	-	Alarm code 4				
1	-	Alarm code 2				
0	_	Alarm code 1				

Note Address = 0502_{H} always returns "0".

[4] Data of alarm occurrence time (Address = 0504_{H}) (ALT0)

Bit	Symbol	Name	Function
31	-	Alarm occurrence time 2147202832	It outputs the time of the alarm issuance.
30	-	Alarm occurrence time 1073601416	 For the models that are equipped with the calendar function (RTC), when RTC is set effective, it shows the time of alarm
29	-	Alarm occurrence time 536800708	issuance. (2) When RTC is set ineffective or for the models that is not
28	-	Alarm occurrence time 268400354	equipped with RTC, it shows the passed time [s] since the
27	-	Alarm occurrence time 134200177	power to the controller is turned on.
26	-	Alarm occurrence time 67108864	How alarm issuance time is calculated in (1) The data of alarm issuance time shows the seconds passed
25	-	Alarm occurrence time 33554432	from the origin time (00hr:00min:00sec 1January2000).
24	-	Alarm occurrence time 16777216	Passed second from the origin time is expressed with S, passed minute with M, passed hour with H, passed day with D
23	-	Alarm occurrence time 8388608	and passed year with Y, and the calculation is conducted with
22	_	Alarm occurrence time 4194304	a formula as shown below: S = Data of read alarm issuance time
		Alarm occurrence time 2097152	M = S/60 (decimal fraction to be rounded down)
21	-	Alarm occurrence time 2097152	H = M/60 (decimal fraction to be rounded down) D = H/24 (decimal fraction to be rounded down)
20	-	Alarm occurrence time 1048576	Y = D/365.25 (decimal fraction to be rounded down)
19	-	Alarm occurrence time 524288	L (Leap year) = Y/4 (decimal fraction to be rounded up)
18	-	Alarm occurrence time 262144	Assuming the second of alarm issuance time is SA, minute is
17	-	Alarm occurrence time 131072	MA, hour is HA, passed day in this year is DA and year is YA, the time can be calculated with a formula as shown below:
16	-	Alarm occurrence time 65536	SA = Remainder of S/60
15	-	Alarm occurrence time 32768	MA = Remainder of M/60 HA = Remainder of H/24
14	-	Alarm occurrence time 16384	DA = D - (Y \times 365+L) Year and day can be figured out by subtracting the number of
13	-	Alarm occurrence time 8192	days in each month from DA.
12	-	Alarm occurrence time 4096	YA = Y+2000 (A.D.) Example) Assuming alarm issuance time data is 172C1B8B _H ;
11	-	Alarm occurrence time 2048	(1) Convert into decimal number: S = 172C1B8B _H ⇒388766603
10	-	Alarm occurrence time 1024	(2) Calculate M, H, D, Y and L.
9	-	Alarm occurrence time 512	M = 388766603/60 = 6479443 H = 6479443/60 = 107990
8	-	Alarm occurrence time 256	D = 107990/24 = 4499
7	-	Alarm occurrence time 128	Y = 4499/365.25 = 12 L = 12/4 = 3
6	-	Alarm occurrence time 64	(3) Figure out SA, MA, HA and DA. SA = Remainder of 388766603/60 = 23
5	-	Alarm occurrence time 32	MA = Remainder of 6479443/60 = 43
4	-	Alarm occurrence time 16	HA = Remainder of 107990/24 = 14 DA = 4499 - (12 × 365+3) = 116
3	-	Alarm occurrence time 8	(116 days has passed in this year and the time of alarm issuance is on the day 117.)
2	-	Alarm occurrence time 4	Year and day = 117 – {31 (Jan) – 29 (Feb) – 31 (Mar)}
1	-	Alarm occurrence time 2	 = 26 (since the number becomes a negative if days in April is subtracted, the time of alarm issuance is on 26April)
0	-	Alarm occurrence time 1	YA = 12+2000 = 2012 As figured out with the calculation above, the time of alarm issuance is 14:43:23 26 Apr 2012.

Bit	Symbol	Name	Function
15	EMG	EMG operation specification	0: Emergency stop not actuated, 1: Emergency stop actuated Changing this bit to "1" will switch the controller to the emergency stop mode. Take note that the drive source will not be cut off. (The ALM LED on the controller will not illuminate.)
14	SFTY	Safety speed command	0: Disable safety speed, 1: Enable safety speed Changing this bit to "1" will limit the speeds of all movement commands to the speed specified by user parameter No. 35, "Safety speed."
13	-	Cannot be used	
12	SON	Servo ON command	 0: Servo OFF, 1: Servo ON Changing this bit to 1 will turn the servo ON. However, the following conditions must be satisfied: Device status register 1 [5.3.11 or 6.4.11] : The EMG status bit is "0". Device status register 1 [5.3.11 or 6.4.11] : The major failure status is "0". Device status register 2 [5.3.12 or 6.4.12] : The enable status bit is "1". System status register [5.3.9 or 6.4.9] : The auto servo OFF status is "0".
11 to 9		Cannot be used	
8	ALRS	Alarm reset command	 0: Normal, 1: Alarm will reset Present alarms will be reset upon detection of a rising edge for this bit (this bit: 0 → 1). Note, however, that if any of the causes for the alarm has not been removed, the same alarm will be generated again. If a rising edge is detected for this bit (this bit: 0 → 1) during a pause, the remaining travel will be canceled.
7	BKRL	Brake forced-release command	0: Normal, 1: Forcibly release brake You can forcibly release the brake by setting this bit to "1".
6	-	Cannot be used	
5	STP	Pause command	 0: Normal , 1: Pause command All motor movement is inhibited while this bit is "1". If this bit turns "1" while the actuator is moving, the actuator will decelerate to a stop. When the bit is set to "0" again thereafter, the actuator will resume the remaining travel. If this bit is turned "1" while the actuator is performing a home return, the movement command is held until the actuator reverses upon contact. When the bit turns "0" thereafter, the actuator will complete the remaining home return operation automatically. However, make sure you perform a home return again after the actuator reverses upon contact.
4	HOME	Home return command	 0: Normal, 1: Home return command Home return will start when a rising edge is detected for this bit (this bit: 0 → 1). Once the home return is completed, the HEND bit will become "1". You can input a home return command again even if the actuator has already completed a home return.
3	CSTR	Positioning start command	 0: Normal, 1: Position start command When a rising edge is detected for this bit (this bit: 0 → 1), the actuator will move to the target position of the position number stored in the position number specification register (POSR:0D03_H). If this bit remains "1", a position complete will not be output even when the actuator enters the positioning band (return to the normal status by writing "0" to this bit). If this command is executed before home return has been performed at least once after the power was turned on (the HEND bit is 0), the actuator will perform home return and then start moving to the target position. * Set the target position, speed, etc., in the position table of the controller beforehand.

[5] Data of device control register 1 (Address = $0D00_H$) (DRG1)

[6] Data of device control register 2 (Address = $0D01_H$) (DRG2)

Bit	Symbol	Name	Function
15	-	Cannot be used	
14	JISL	Jog/inch switching	 0: Jog, 1: Inching When this bit is "0", the jog operation is selected. When this bit is "1", the inching operation is selected. If this bit turns "1" while the actuator is jogging, the actuator will accelerate to a stop. While the actuator is inching, turning this bit "0" will have no effect and the actuator will continue with the inching operation. The setting of this bit is not reflected in any jog/inching operation set from the teaching tool.
13	-	Cannot be used	
12	-	Cannot be used	
11	MOD	Teaching mode command	0: Normal operation mode, 1: Teaching mode Changing this bit to "1" will switch the controller to the teaching mode.
10	TEAC	Position data load command	 0: Normal, 1: Position data load command The current position data will be written to the position number specified by the position number specification register if "1" is written to this bit while the 11th bit of the teach mode command is "1" (teaching mode). The current position data is loaded to the position data line specified by the position number specification register. If the position number under which the data is loaded is an empty position, meaning that no data is currently set, the data fields other than target position (such as positioning band, etc.) will be automatically populated by the default values of the respective parameters. Make sure that after this bit is set to "1", it will remain "1" for at least 20 ms.
9	JOG+	Jog+ command	 0: Normal, 1: Jog+ command The actuator jogs in the direction opposite home as long as this bit is "1" if the 14th JISL bit is "0". The speed and acceleration/deceleration match the specifications in user parameter No. 26 "PIO jog speed" and rated acceleration/deceleration speed. If this bit is set to "0" or the 8th bit of the jog-command is changed to "1", the actuator will decelerate to a stop. If a positive edge (this bit: 0 → 1) is detected for the jog+ command while the 14th JISL bit is "0", the actuator inches in the direction opposite home. The speed, travel and acceleration/deceleration speed match the specifications in user defined parameter No. 26 "PIO jog speed", user parameter No. 48 "PIO inching distance" and rated jog acceleration/deceleration, respectively.
8	JOG-	Jog- command	 0: Normal, 1: Jog- command The actuator jogs in the direction of home as long as this bit is "1" if the 14th JISL bit is "0". The speed and acceleration/deceleration speed match the specifications in user parameter No. 26 "PIO jog speed" and rated acceleration/deceleration speed. If this bit is set to "0" or the 9th bit of the jog-command is changed to "1", the actuator will decelerate to a stop. If a positive edge (this bit: 0 → 1) is detected for the jog+ command while the 14th JISL bit is "1", the actuator inches in the direction of home. The speed, travel and acceleration/deceleration speed match the specifications in user defined parameter No. 26 "PIO jog speed", user parameter No. 48 "PIO inching distance" and rated jog acceleration/deceleration, respectively.
7	ST7	Start position 7	
6	ST6	Start position 6	The actuator moves to the position of the specified position number.
5	ST5	•	These bits are only valid when solenoid valve mode is selected. The move is started if either of the ST0 to ST7 bits is set to "1" (this bit: 0 \rightarrow
		Start position 5	1). If a position other than the enabled start poison is selected, the alarm
4	ST4	Start position 4	(085: Position No. error at moving) is generated.
3	ST3	Start position 3	You can select the signal input method as "Level" or "Edge" in user
2	ST2	Start position 2	parameter No. 27, "Movement command type".
1	ST1	Start position 1	If multiple positions are entered at the same time, the smallest number takes the priority.
0	ST0	Start position 0	

[7] Data of position number command registers (Address = 0D03_H) (POSR) Position movement command register details (Address = 9800_H) (POSR) Data of program number command registers (Address = 0D03_H) (POSR)

...For SCON Servo Press type

Bit	Symbol	Name	Function
15	-	Cannot be used	
14	-	Cannot be used	
13	-	Cannot be used	
12	-	Cannot be used	
11	-	Cannot be used	
10	-	Cannot be used	
9	PC512	Position command bit 512	
8	PC256	Position command bit 256	* Position command bit : For other types than Servo Press Type Program command bit: For Servo Press Type (Max: 63)
7	PC128	Position command bit 128	These bits indicate position numbers to be moved using binary codes. Note that the maximum position number varies depending on the model and PIO pattern.
6	PC64	Position command bit 64	[When address = 0D03 _H is used] After specifying a position number, set the CSTR (start signal) of device control register 1 to "1", and the actuator will move to the specified
5	PC32	Position command bit 32 Program command bit 32	position. Refer to [5.5.1] or [6.6.1.] [When address = 9800 _H is used]
4	PC16	Position command bit 16 Program command bit 16	This register is such that once a position number is specified, the actuator will move to the specified position. You need not set the CSTR (start signal).
3	PC8	Position command bit 8 Program command bit 8	[For Servo Press Type] After indicating the press program number in this register, set PSTR
2	PC4	Position command bit 4 Program command bit 4	(start signal) in the press program control register to "1", and the program gets executed. After indicating the press program number in this register, set PHOM
1	PC2	Position command bit 2 Program command bit 2	(program home-return movement signal) in the press program control register to "1", and movement gets made to the program home position set in the indicated program number.
0	PC1	Position command bit 1 Program command bit 1	

Bit	Symbol	Name	Function
31	-	Total moving count 2147202832	
30	-	Total moving count 1073601416	
29	-	Total moving count 536800708	
28	-	Total moving count 268400354	
27	-	Total moving count 134200177	
26	-	Total moving count 67108864	
25	-	Total moving count 33554432	
24	-	Total moving count 16777216	
23	-	Total moving count 8388608	
22	-	Total moving count 4194304	
21	-	Total moving count 2097152	
20	-	Total moving count 1048576	
19	-	Total moving count 524288	It shows the total moving count.
18	-	Total moving count 262144	Total moving count are read out in binary codes.
17	-	Total moving count 131072	 Corresponding Model: PCON-CA/CFA/CB/CFB/CBP/CYB/PLB/POB
16	-	Total moving count 65536	ACON-CA/CB/CYB/PLB/POB
15	-	Total moving count 32768	DCON-CA/CB/CYB/PLB/POB SCON-CA/CAL/CB
14	-	Total moving count 16384	• ERC3
13	-	Total moving count 8192	 RCP6S, RCM-P6PC, RCM-P6AC, RCM-P6DC
12	-	Total moving count 4096	
11	-	Total moving count 2048	
10	-	Total moving count 1024	
9	-	Total moving count 512	
8	-	Total moving count 256	
7	-	Total moving count 128	
6	-	Total moving count 64	
5	-	Total moving count 32	
4	-	Total moving count 16	
3	-	Total moving count 8	
2	-	Total moving count 4	
1	-	Total moving count 2	
0	-	Total moving count 1	

[8] Data of total moving count (Address = 8400_{H}) (TLMC)

Bit	Symbol	Name	Function
31	-	Total moving distance 2147202832	
30	-	Total moving distance 1073601416	
29	-	Total moving distance 536800708	
28	-	Total moving distance 268400354	
27	-	Total moving distance 134200177	
26	-	Total moving distance 67108864	
25	-	Total moving distance 33554432	
24	-	Total moving distance 16777216	
23	-	Total moving distance 8388608	
22	-	Total moving distance 4194304	
21	-	Total moving distance 2097152	
20	-	Total moving distance 1048576	
19	-	Total moving distance 524288	It shows the total moving distance [m].
18	-	Total moving distance 262144	Total moving distance are read out in binary codes.
17	-	Total moving distance 131072	* Corresponding Model:
16	-	Total moving distance 65536	 PCON-CA/CFA/CB/CFB/CBP/CYB/PLB/POB
15	-	Total moving distance 32768	 ACON-CA/CB/CYB/PLB/POB DCON-CA/CB/CYB/PLB/POB
14	-	Total moving distance 16384	• SCON-CA/CAL/CB
13	-	Total moving distance 8192	 ERC3 RCP6S, RCM-P6PC, RCM-P6AC, RCM-P6DC
12	-	Total moving distance 4096	
11	-	Total moving distance 2048	
10	-	Total moving distance 1024	
9	-	Total moving distance 512	
8	-	Total moving distance 256	
7	-	Total moving distance 128	
6	-	Total moving distance 64	
5	-	Total moving distance 32	
4	-	Total moving distance 16	
3	-	Total moving distance 8	
2	-	Total moving distance 4	
1	-	Total moving distance 2	
0	-	Total moving distance 1	

[9] Data of total moving distance	$(Address = 8402_H) (ODOM)$
-----------------------------------	-----------------------------

Bit	Symbol	Name	Function
31	-	Current time 2147202832	It outputs the time of the Current time issuance. (1) For the models that are equipped with the calendar function
30	-	Current time 1073601416	(RTC), when RTC is set effective, it shows the time of alarm
29	-	Current time 536800708	issuance.(2) When RTC is set ineffective or for the models that is not
28	-	Current time 268400354	equipped with RTC, it shows the passed time [s] since the power to the controller is turned on.
27	-	Current time 134200177	 How Current time is calculated in 1)
26	-	Current time 67108864	The data of Current time shows the seconds passed from the origin time (00hr:00min:00sec 1January2000).
25	-	Current time 33554432	Passed second from the origin time is expressed with S, passed
24	-	Current time 16777216	minute with M, passed hour with H, passed day with D and passed year with Y, and the calculation is conducted with a
23	-	Current time 8388608	formula as shown below: S = Data of read alarm issuance time
22	-	Current time 4194304	M = S/60 (decimal fraction to be rounded down)
21	-	Current time 2097152	H = M/60 (decimal fraction to be rounded down) D = H/24 (decimal fraction to be rounded down)
20	_	Current time 1048576	Y = D/365.25 (decimal fraction to be rounded down)
19	_	Current time 524288	L (Leap year)= Y/4 (decimal fraction to be rounded up)
18	_	Current time 262144	Assuming the second of time is SA, minute is MA, hour is HA, passed day in this year is DA and year is YA, the time can be
17	_	Current time 131072	calculated with a formula as shown below:
16	_	Current time 65536	SA = Remainder of S/60 MA = Remainder of M/60
15	_	Current time 32768	HA = Remainder of H/24 DA = D- (Y \times 365+L)
14	_	Current time 16384	Year and day can be figured out by subtracting the number of days in each month from DA.
13	_	Current time 8192	YA = Y+2000 (A.D.)
12	_	Current time 4096	Example) Assuming Current time data is 2AD02DA8 _{H.}
11	_	Current time 2048	1) Convert into decimal number: S = 2AD02DA8 _H ⇒ 718286248
10	_	Current time 1024	2) Calculate M, H, D, Y and L.
9	_	Current time 512	M = 718286248/60 = 11971437 H = 11971437/60 = 199523
8	-	Current time 256	D = 199523/24 = 8313 Y = 8313/365.25 = 22
7	-	Current time 128	L = 22/4 = 5 3) Figure out SA, MA, HA and DA.
6	-	Current time 64	SA = Remainder of 388766603/60 = 23 MA = Remainder of 6479443/60 = 43
	-		HA = Remainder of 107990/24 = 14
5	-	Current time 32	DA = $8313 - (12 \times 365+3) = 278$ (116 days has passed in this year and the time of alarm
4	-	Current time 16	issuance is on the day 117.) Year and day* ¹ = 278 -31-28-31-30-31-30-31-31-30 = 5
3	-	Current time 8	*1 Deduct days of each month from DA. In the example, it
2	-	Current time 4	makes negative number if days for October (31 days) are deducted, therefore the timing to acquire current time
1	-	Current time 2	should be October 5. YA = 22+2000 = 2022
0	-	Current time 1	As figured out with the calculation above, the Current time is 11:57:28 05Oct.2022.

[11] Data of total FAN driving time (Address = $842A_H$ (SCON-CAL, SCON-CB [400W or more]), $842E_H$ (PCON-CFA/CFB) (TFAN)

Bit	Symbol	Name	Function
31	_	Total FAN driving time 2147202832	
30	-	Total FAN driving time 1073601416	
29	-	Total FAN driving time 536800708	
28	-	Total FAN driving time 268400354	
27	-	Total FAN driving time 134200177	
26	-	Total FAN driving time 67108864	
25	-	Total FAN driving time 33554432	
24	-	Total FAN driving time 16777216	
23	-	Total FAN driving time 8388608	
22	-	Total FAN driving time 4194304	
21	-	Total FAN driving time 2097152	
20	-	Total FAN driving time 1048576	
19	-	Total FAN driving time 524288	
18	-	Total FAN driving time 262144	
17	-	Total FAN driving time 131072	It shows the total FAN driving time [s]. Total FAN driving time are read out in binary codes.
16	-	Total FAN driving time 65536	* Corresponding Model:
15	-	Total FAN driving time 32768	PCON-CFA/CFB/CGFB,
14	-	Total FAN driving time 16384	SCON-CAL/CGAL, SCON-CB/CGB [400W or more]
13	_	Total FAN driving time 8192	
12	-	Total FAN driving time 4096	
11	_	Total FAN driving time 2048	
10	-	Total FAN driving time 1024	
9	_	Total FAN driving time 512	
8	_	Total FAN driving time 256	
7	_	Total FAN driving time 128	
6	_	Total FAN driving time 64	
5	-	Total FAN driving time 32	
4	-	Total FAN driving time 16	
3	-	Total FAN driving time 8	
2	-	Total FAN driving time 4	
1	-	Total FAN driving time 2	
0	_	Total FAN driving time 1	

Bit	Symbol	Name	Function
15	EMGS	EMG status	0: Emergency stop not actuated, 1: Emergency stop actuated This bit indicates whether or not the controller is currently in the emergency stop mode due to an emergency stop input, cutoff of the drive source, etc.
14	SFTY	Safety speed enabled status	0: Safety status disabled, 1: Safety status enabled Enable/disable the safety speed of the controller using the "safety speed command bit" of device control register 1.
13	PWR	Controller ready status	 Controller busy, 1: Controller ready This bit indicates whether or not the controller can be controlled externally. Normally this bit does not become "busy".
12	SV	Servo ON status	 0: Servo OFF, 1: Servo ON The servo ON status is indicated. After a servo ON command is issued, this bit will remain "0" until the servo ON delay time set by a parameter elapses. If the servo cannot be turned ON for some reason even after a servo ON command is received, this bit will remain "0". The RC controller does not accept any movement command while this bit is "0".
11	PSFL	Missed work part in push-motion operation	 0: Normal, 1: Missed work part in push-motion operation This bit turns "1" when the actuator has moved to the end of the push band without contacting the work part (= the actuator has missed the work part) according to a push-motion operation command. Operation commands other than push-motion do not change this bit.
10	ALMH	Major failure status	0: Normal, 1: Major failure alarm present This bit will turn "1" if any alarm at the cold start level or operation cancellation level is generated. Alarms at the operation cancellation level can be reset by using an alarm reset command, but resetting alarms at the cold start level requires turning the power supply off and then on again.
9	ALML	Minor failure status	0: Normal, 1: Minor failure alarm present This bit will turn "1" when a message level alarm is generated.
8	ABER	Absolute error status	0: Normal, 1: Absolute error present This bit will turn "1" if an absolute error occurs in case the absolute specification is set.
7	BKRL	Brake forced-release status	0: Brake actuated, 1: Brake released This bit indicates the status of brake operation. Normally the bit remains "1" while the servo is ON. Even when the servo is OFF, changing the "brake forced-release command bit" in device control register 1 to "1" will change this bit to "1".
6	-	Cannot be used	
5	STP	Pause status	0: Normal, 1: Pause command active This bit remains 1 while a pause command is input. If the PIO/Modbus Switch Setting [5.4.16] or [6.5.16] is PIO enabled, paused PIO signals are monitored (For those RC controllers that possess the operation mode setting switch, set the switch to AUTO.). If Modbus is enabled, the Pause Commands [5.4.6] or [6.5.6] are monitored.
4	HEND	Home return completion status	0: Home return not yet complete, 1: Home return complete This bit will become "1" when home return is completed. In case the absolute specification is set, the bit is set to "1" from the startup if absolute reset has been completed. If a movement command is issued while this bit is "0", an alarm will generate.
3	PEND	Position complete status	0: Positioning not yet complete, 1: Position complete This bit turns "1" when the actuator has moved close enough the target position and entered the positioning band. It also turns "1" when the servo turns on after the actuator has started, because the controller recognizes that the actuator has completed a positioning to the current position. This bit will also become "1" during the push-motion operation as well as at the completion.
2	CEND	Load cell calibration complete	0: Calibration not yet complete, 1: Calibration complete This bit turns "1" when the load cell calibration command (CLBR) has been successfully executed.
1	CLBS	Load cell calibration status	0: Calibration not yet complete, 1: Calibration complete Regardless of whether or not a load cell calibration command has been issued, this bit is "1" as long as a calibration has completed in the past.
0	-	Cannot be used	

[12] Data of device status register 1 (Address = 9005_H) (DSS1)

Bit	Symbol	Name	Function
15	ENBS	Enable	 0: Disable condition (Operation Stop, Servo OFF) 1: Enable condition (normal operation) It shows the condition of the enable switch when a teaching tool that is equipped with an enable switch (dead man's switch) is connected to a model that has the enable function equipped. (Note) It is fixed to "1" when in AUTO Mode or for a model without the enable function being equipped.
14	-	Cannot be used	
13	LOAD	Load output judgment status	 0: Normal, 1: Load output judgment If a load current threshold or check range (individual zone boundaries) is set when a movement command is issued, this bit indicates whether or not the motor current has reached the threshold inside the check range. This bit maintains the current value until the next position command is received.
12	TRQS	Torque level status	 0: Normal, 1: Torque level achieved This bit turns 1 when the current has reached a level corresponding to the specified push torque during a push-motion operation. Since this bit indicates a level, its status will change when the current level changes.
11	MODS	Teaching mode status	0: Normal operation mode, 1: Teaching mode This bit becomes "1" when the teaching mode is selected by the "teach mode command bit" of device control register 2.
10	TEAC	Position-data load command status	0: Normal, 1: Position data load complete Setting the "position-data load command bit" in device control register 2 to "1" will change this bit to "0". This bit will turn "1" once position data has been written to the EEPROM successfully.
9	JOG+	Jog+ status	 Normal, 1: "Jog+" command active This bit becomes "1" while the "jog+ command bit" of device control register 2 is selected.
8	JOG-	Jog- status	 Normal, 1: "Jog-" command active This bit becomes "1" while the "jog- command bit" of device control register 2 is selected.
7	PE7	Position complete 7	These bits output a position complete number as a binary value in
6	PE6	Position complete 6	solenoid valve mode.
5	PE5	Position complete 5	Each of these bits turns "1" when the actuator has completed a position movement and become close enough to the target position
4	PE4	Position complete 4	by entering the positioning band according to a position movement command (ST0 to ST7 in device control register 2).
3	PE3	Position complete 3	Although the bit turns "0" once the servo is turned OFF, when the
2	PE2	Position complete 2	servo is turned ON again the bit will turn "1" if the actuator is still within the positioning band of the specified command position data.
1	PE1	Position complete 1	Moreover, they will become "1" when push-motion is completed or
0	PE0	Position complete 0	missed in push-motion operation.

[13] Data of device status register 2	(Address = 9006 _H) (DSS2)
---------------------------------------	---------------------------------------

Bit	Symbol	Name	Function
15	EMGP	Emergency stop status	0: Emergency stop input OFF, 1: Emergency stop input ON This bit indicates the status of the emergency stop input port.
14	MPUV	Motor voltage low status	0: Normal, 1: Motor drive source cut off This bit becomes "1" if there is no input from the motor drive power supply.
13	RMDS	Operation mode status	0: AUTO mode, 1: MANU mode This bit becomes "1" when the RC controller is in the MANU mode. However, for those with no operation mode setting switch equipped, it should always be set to MANU mode.
12	-	Cannot be used	-
11	GHMS	Home return status	0: Normal, 1: Home return This bit remains "1" for as long as home return is in progress. This bit will be "0" in other cases.
10	PUSH	Push-motion operation in progress	 0: Normal, 1: Push-motion operation in progress This bit remains "1" while the actuator is performing a push-motion operation (excluding an approach operation). It will turn "0" under the following conditions: (1) The actuator has missed the push motion operation. (2) The actuator has paused. (3) The next movement command has been issued. (4) The servo has turned OFF.
9	PSNS	Excitation detection status	 0: Excitation detection not yet complete, 1: Excitation detection complete PCON/ERC2, ERC3 Series controllers perform excitation detection at the first servo ON command received after the controller has started. This bit becomes "1" when excitation detection is completed. This bit remains "0" if the excitation detection has failed. Even after a successful detection, the bit will return to "0" when a software reset is performed. The models equipped with the high-resolution battery-less absolute encoder should be set at "1" all the time. This bit becomes "1" if pole sensing is performed with the first servo ON command after startup and the operation is completed in case of ACON series controllers. On SCON Series controllers, this bit is always "0".
8	PMSS	PIO/Modbus switching status	0: PIO commands enabled, 1: PIO command disabled The result of switching according to the PIO/Modbus switching setting explained in [5.4.16] or [6.5.16], or the current status, is indicated.
7	-	Cannot be used	-
6	-	Cannot be used	-
5	MOVE	Moving signal	0: Stopped, 1: Moving Moving (home-return operation and pressing operation included) should be "1". This bit remains "0" while the actuator is paused.
4	-	Cannot be used	-
3	-	Cannot be used	-
2	-	Cannot be used	-
1	-	Cannot be used	-
0	-	Cannot be used	-

[14] Data of expansion device status register (Address = 9007_{H}) (DSSE)

Bit	Symbol	Name	Function
31	BATL	Absolute Battery Voltage Drop (for SCON only)	0: In normal condition, 1: Battery voltage drop It becomes "1" once the voltage of the absolute battery reaches below the alarm level. The operation of the axes can be held even if this bit is showing "1" as far as Critical Failure Status Bit in Device Status Register 1 is showing "0".
30 to 18	-	Cannot be used	-
17	ASOF	Auto servo OFF	0: Normal, 1: Auto servo OFF If "Auto servo OFF delay time" is set with a parameter of the RC controller, this bit becomes "1" when the servo is turned OFF automatically after the specified time has elapsed following the position complete.
16	AEEP	Nonvolatile memory being accessed	0: Normal, 1: Nonvolatile memory being accessed This bit turns "1" as soon as the nonvolatile memory in the RC controller is accessed to read or write the controller's parameter position table, etc. The bit becomes "0" when the access is completed or a timeout error occurs.
15 to 5	-	Cannot be used	-
4	RMDS	Operation mode status	0: AUTO mode, 1: MANU mode This bit becomes "1" when the RC controller is in the MANU mode. However, for those with no operation mode setting switch equipped, it should always be set to MANU mode.
3	HEND	Home return completion status	0: Home return not yet complete, 1: Home return completion This bit will become 1 when home return is completed. In case the absolute specification is set, the bit is set to "1" from the startup if absolute reset has been completed. If a movement command is issued while this bit is "0", an alarm will generate.
2	SV	Servo status	 0: Servo OFF, 1: Servo ON The servo ON status is indicated. After a servo ON command is issued, this bit will remain "0" until the servo ON delay time set by a parameter elapses. If the servo cannot be turned ON for some reason even after a servo ON command is received, this bit will remain "0". The RC controller does not accept any movement command while this bit is "0".
1	SON	Servo command status	 0: Servo OFF, 1: Servo ON This bit indicates the servo ON/OFF command status. This bit will turn "1" when the following conditions are met: The EMG status bit in device status register 1 is "0". (Refer to [5.3.12] or [6.4.12]). The major failure status bit in device status register 1 is "0". (Refer to [5.3.12] or [6.4.12]). The enable status bit in device status register 2 is "1". (Refer to [5.3.13] or [6.4.13]). The auto servo OFF status in the system status register is "0". (Refer to [5.3.15] or [6.4.15])
0	MPOW	Drive source ON	0: Drive source cut off, 1: Normal This bit will turn "0" when the motor drive-source cutoff terminal is released.

[15] Data	of system statu	us registers (A	Address = 9	9008 _н) (STAT)

Bit	Symbol	Name	Function
15	-	Cannot be used	-
14	NP	Command pulse NP signal status	This bit indicates the status of the command pulse NP signal.
13	-	Cannot be used	-
12	PP	Command pulse PP signal status	This bit indicates the status of the command pulse PP signal.
11	-	Cannot be used	-
10	-	Cannot be used	-
9	-	Cannot be used	-
8	MDSW	Mode switch status	0: AUTO mode, 1: MANU mode This bit becomes "1" when the RC controller is in the MANU mode. However, for those with no operation mode setting switch equipped, it should always be set to MANU mode.
7	-	Cannot be used	-
6	-	Cannot be used	-
5	-	Cannot be used	-
4	BLCT	Belt breakage sensor (SCON only)	0: Belt broken, 1: Normal
3	НМСК	Home-check sensor monitor	0: Sensor OFF, 1: Sensor ON On a model equipped with a home-check sensor function, this bit indicates the status of sensor input. It is always "0" on any other model.
2	ОТ	Overtravel sensor monitor	0: Sensor OFF, 1: Sensor ON This bit indicates the status of the overtravel sensor signal in the encoder connector. It is always "0" on a model not equipped with an overtravel sensor.
1	CREP	Creep sensor monitor	0: Sensor OFF, 1: Sensor ON This bit indicates the status of the creep sensor signal in the encoder connector. It is always "0" on a model not equipped with a creep sensor.
0	LS	Limit sensor monitor	0: Sensor OFF, 1: Sensor ON This bit indicates the status of the limit sensor signal in the encoder connector. It is always "0" on a model not equipped with a limit sensor.

[16] Data of special port monitor registers (Address = 9012_H) (SIPM)

Bit	Symbol	Name	Function
15	-	Cannot be used	-
14	LS2	Limit sensor output monitor 2 (When in Electromagnetic Valve Mode 2, Single Solenoid Mode or Double Solenoid Mode for PCON, ACON, DCON and SCON)	0: Out of range, 1: In range The negative boundary of the positioning band is obtained by subtracting the positioning band size from target position No. 2 while the positive boundary of the positioning band is obtained by adding the positioning band size to target position No. 2. This bit will become "1" when the current position is within the band and "0" when it is outside the band. This bit becomes effective upon home return completion. It remains effective even while the servo is OFF.
13	LS1	Limit sensor output monitor 1 (When in Electromagnetic Valve Mode 2, Single Solenoid Mode or Double Solenoid Mode for PCON, ACON, DCON and SCON)	 0: Out of range, 1: In range The negative boundary of the positioning band is obtained by subtracting the positioning band size from target position No. 1 while the positive boundary of the positioning band is obtained by adding the positioning band size to target position No. 1. This bit will become "1" when the current position is within the band and "0" when it is outside the band. This bit becomes effective upon home return completion. It remains effective even while the servo is OFF.
12	LS0	Limit sensor output monitor 0 (When in Electromagnetic Valve Mode 2, Single Solenoid Mode or Double Solenoid Mode for PCON, ACON, DCON and SCON)	0: Out of range, 1: In range The negative boundary of the positioning band is obtained by subtracting the positioning band size from target position No. 0 while the positive boundary of the positioning band is obtained by adding the positioning band size to target position No. 0. This bit will become "1" when the current position is within the band and "0" when it is outside the band. This bit becomes effective upon home return completion. It remains effective even while the servo is OFF.
11	-	Cannot be used	-
10	-	Cannot be used	-
9	-	Cannot be used	-
8	ZP	Position zone output monitor	0: Out of range, 1: In range This bit remains "1" while the current position is within the zone range specified for each position and becomes "0" when it is outside the range. This bit becomes effective upon home return completion. It remains effective even while the servo is OFF.
7	-	Cannot be used	-
6	-	Cannot be used	-
5	-	Cannot be used	-
4	-	Cannot be used	-
3	-	Cannot be used	-
2	-	Cannot be used	-
1	Z2	Zone output monitor 2	0: Out of range, 1: In range This bit remains "1" while the current position is within the range where the zone boundary 2 parameter is set and becomes "0" when it is outside the range. This bit becomes effective upon home return completion. It remains effective even while the servo is OFF.
0	Z1	Zone output monitor 1	 0: Out of range, 1: In range This bit remains "1" while the current position is within the range where the zone boundary 1 parameter is set and becomes "0" when it is outside the range. This bit becomes effective upon home return completion. It remains effective even while the servo is OFF.

[17] Data of zone status register	$(Address = 9013_H) (ZONS)$
-----------------------------------	-----------------------------

[18] Data of position number status register (Address = 9014_H) (POSS) Exected program number registers (Address = 9014_H) (POSR)

 For SCON Servo Pres 	s Type
---	--------

Bit	Symbol	Name	Function
15	-	Cannot be used	-
14	-	Cannot be used	-
13	-	Cannot be used	-
12	-	Cannot be used	-
11	-	Cannot be used	-
10	-	Cannot be used	-
9	PM512	Position complete number status bit 512	
8	PM256	Position complete number status bit 256	These bits indicate position numbers for which positioning has been completed (Valid in cases other than solenoid valve mode).
7	PM128	Position complete number status bit 128	The position complete is read as binary code. It becomes possible to read position complete numbers when the current position gets close to the target position
6	PM64	Position complete number status bit 64	(within the positioning band in either the positive or negative directions). "0" is read in other cases.
5	PM32	Position complete number status bit 32 Exected program No. 32	Although all the bits will change to "0" once the servo turns OFF, the position complete becomes valid again if the current position is still inside the positioning band when the
4	PM16	Position complete number status bit 16 Exected program No. 16	servo is turned ON subsequently. In push-motion, the position complete numbers can be read at both the completion and miss of push-motion.
3	PM8	Position complete number status bit 8 Exected program No. 8	[For Servo Press Type]
2	PM4	Position complete number status bit 4 Exected program No. 4	Shown below is the exected press program number. The value is maintained after press program is complete till the servo gets turned OFF or another movement command
1	PM2	Position complete number status bit 2 Exected program No. 2	gets issued. Also, it shows "FFFF _H " during the program is stopped.
0	PM1	Position complete number status bit 1 Exected program No. 1	

Bit	Symbol	Name	Function
15	-	Cannot be used	
14	-	Cannot be used	
13	-	Cannot be used	
12	-	Cannot be used	
11	ALMC	Cold start level alarm	0: Normal, 1: Cold level start alarm in occurrence It becomes "1" when the cold start level alarm is being occurred. It is necessary to cancel the cause of the alarm issuance and reboot the power in order to resume the operation.
10	-	Cannot be used	
9	-	Cannot be used	
8	RTC	RTC (calendar) function use	0: RTC (calendar) function not in use 1: RTC (calendar) function use * Corresponding Model: ERC3, PCON-CA/CFA/CB/CFB/CBP, ACON-CA/CB, DCON-CA/CB, SCON-CA/CAL/CB
7	-	Cannot be used	
6	-	Cannot be used	
5	-	Cannot be used	
4	-	Cannot be used	
3	-	Cannot be used	
2	-	Cannot be used	
1	-	Cannot be used	
0	-	Cannot be used	

[19]	Data of e	expansion	system	status	registers	(Address	= 9015.) (SSSF)
[]]	Dulu of C	npunoion	oyotonn.	oluluo	regiotore	(/ (ddi 000		000L)

Bit	Symbol	Name	Function
31	_	Overload level monitor 2147202832	
30	_	Overload level monitor 1073601416	
29	_	Overload level monitor 536800708	
28	-	Overload level monitor 268400354	
27	_	Overload level monitor 134200177	
26	-	Overload level monitor 67108864	
25	_	Overload level monitor 33554432	
24	-	Overload level monitor 16777216	
23	_	Overload level monitor 8388608	
22	-	Overload level monitor 4194304	
21	_	Overload level monitor 2097152	
20	-	Overload level monitor 1048576	
19	_	Overload level monitor 524288	
18	-	Overload level monitor 262144	
17	_	Overload level monitor 131072	It shows the current load status [%].
16	-	Overload level monitor 65536	The overload level monitor is read out in the binary code.
15	-	Overload level monitor 32768	* Corresponding Model:SCON-CA/CAL/CB/CGB
14	-	Overload level monitor 16384	
13	-	Overload level monitor 8192	
12	-	Overload level monitor 4096	
11	-	Overload level monitor 2048	
10	-	Overload level monitor 1024	
9	-	Overload level monitor 512	
8	-	Overload level monitor 256	
7	_	Overload level monitor 128	
6	-	Overload level monitor 64	
5	_	Overload level monitor 32	
4	-	Overload level monitor 16	
3	_	Overload level monitor 8	
2	-	Overload level monitor 4	
1	_	Overload level monitor 2	
0	_	Overload level monitor 1	

[20] Overload level monitors (Address = 9020_H) (OLLV)

Bit	Symbol	Name	Function
15	_	Alarm code 32768	
14	-	Alarm code 16384	
13	-	Alarm code 8192	
12	-	Alarm code 4096	
11	-	Alarm code 2048	
10	-	Alarm code 1024	
9	-	Alarm code 512	It shows the alarm code numbers of press program.
8	-	Alarm code 256	It gets output when an alarm is generated. It is " 0_H " when there is no alarm generated.
7	-	Alarm code 128	The alarm codes are read out in the binary code. For the details of the alarm codes, refer to the [instruction manual
6	-	Alarm code 64	of each controller].
5	-	Alarm code 32	
4	_	Alarm code 16	
3	_	Alarm code 8	
2	-	Alarm code 4	
1	-	Alarm code 2	
0	_	Alarm code 1	

[21] Press program alarm codes (Address = 9022_H) (ALMP) SCON Servo Press Type only

Bit	Symbol	Name	Function
15	_	Alarm generated press program No.32768	
14	-	Alarm generated press program No.16384	
13	-	Alarm generated press program No.8192	
12	-	Alarm generated press program No.4096	
11	-	Alarm generated press program No.2048	
10	-	Alarm generated press program No.1024	
9	-	Alarm generated press program No.512	
8	-	Alarm generated press program No.256	The press program number that an alarm is issued gets displayed.
7	-	Alarm generated press program No.128	It gets output when an alarm is generated. It is " 0_H " when there is no alarm generated.
6	-	Alarm generated press program No.64	
5	-	Alarm generated press program No.32	
4	-	Alarm generated press program No.16	
3	-	Alarm generated press program No.8	
2	-	Alarm generated press program No.4	
1	-	Alarm generated press program No.2	
0	_	Alarm generated press program No.1	

[22] Alarm generated press program No. (Address = 9023_{H}) (ALMP) SCON Servo Press Type only

[23] Press program status registers (Address = 9024_H) (PPST) SCON Servo Press Type only

Bit	Symbol	Name	Function
15	-	Cannot be used	
14	WAIT	Waiting	It turns to "1" during the waiting of the press program.
13	RTRN	While in returning operation	It turns to "1" during the returning of the press program.
12	DCMP	While in depression operation	It turns to "1" during the depression operation of the press program.
11	PSTP	Pressurize during the stop	It turns to "1" during the pressurize the stop of the press program.
10	PRSS	While in pressurizing operation	It turns to "1" during the pressurizing operation of the press program.
9	SERC	While in probing operation	It turns to "1" during the probing operation of the press program.
8	APRC	While in approaching operation	It turns to "1" during the approaching operation of the press program.
7	-	Cannot be used	
6	-	Cannot be used	
5	-	Cannot be used	
4	MPHM	Program home return during the movement	It turns to "1" during the program home-return movement, program depressurizing stage and return stage by the program home-return movement command, and during the program home position retract movement by the program alarm, and program home position retract movement by the program compulsory complete command.
3	PALM	Program alarm	It turns to "1" when the program alarm generated. The program alarm can be cancelled by the alarm reset as it is the movement cancellation level.
2	PCMP	Program finished in normal condition	It turns to "1" once it has transited to the standby period after a program is finished in the normal condition. It remains to "0" when the program is interrupted or finished in an error. Also, it remains to 0 when the program home-return movement completed. It is remained till the next program start command or movement command or servo OFF command gets issued even after a program is finished.
1	PRUN	While in executing program	It show the press program is in exection. It is "1" from the program start till the standby period finishes. It is not included during the program home-return movement. Program alarm gets issued when another program start command or axis movement command is executed while this bit is "1".
0	PORG	Program home position	It shows "1" when it is on the program home position coordinates of the indicated program number while a program is executed or during the program home-return movement. It is remained after program complete or program home-return movement complete till the next program start command, movement command or servo OFF command is issued.

Bit Symbol Name Function Cannot be used 15 14 Cannot be used _ 13 Cannot be used 12 _ Cannot be used Cannot be used 11 _ 10 Cannot be used 9 _ Cannot be used 8 Cannot be used 7 Cannot be used _ 6 _ Cannot be used 0: Load judgment not conducted, 1: Load judgement NG Load judgment is conducted during the period from the pressurizing operation finish in the normal condition till the end of stop status. 5 LJNG Load judgement NG It turns to "1" when NG is detected in the load judgment during the judgment period. It shows "0" while in a period out of the judgment period, when the load judgment is not activated and when the load judgment is OK. 0: Load judgment not conducted, 1: Load judgement OK Load judgment is conducted during the period from the pressurizing operation finish in the normal condition till the end of stop status. LJOK Load judgement OK It turns to "1" when OK is detected in the load judgment during the 4 judgment period. It shows "0" while in a period out of the judgment period, when the load judgment is not activated and when the load judgment is NG. 0: Position (distance) not conducted, 1: Position (distance) judgement NG Position (distance) judgement is conducted during the period from the pressurizing operation finish in the normal condition till the end of stop Position (distance) status. P.JNG 3 judgement NG It turns to "1" when NG is detected in the load judgment during the judgment period. It shows "0" while in a period out of the judgment period, when the load judgment is not activated and when the load judgment is OK. 0: Position (distance) not conducted, 1: Position (distance) judgement OK Position (distance) judgement is conducted during the period from the pressurizing operation finish in the normal condition till the end of stop Position (distance) status 2 PJOK judgement OK It turns to "1" when OK is detected in the load judgment during the judgment period. It shows "0" while in a period out of the judgment period, when the load judgment is not activated and when the load judgment is NG. 0: Total judgement not conducted, 1: Total judgement NG It turns to "1" when failure is detected in either of the position (distance) judgment or the load judgment at the end of the judgment period. **JDNG** Total judgement NG 1 It shows "0" while in a period out of the judgment period or when no NG is detected in both of the position (distance) judgment and the load judgment. 0: Total judgement not conducted, 1: Total judgement OK It shows "1" when the load judgment is passed in both of the position (distance) judgment and the load judgment at the end of the judgment 0 JDOK Total judgement OK period, or either of them is judged passed and the other is inactivated. It shows "0" while in a period out of the judgment period or when no OK is detected in both of the position (distance) judgment and the load

judgment.

[24] Press program judgements status registers (Address = 9025_H) (PPJD) SCON Servo Press Type only

4.3.3 Structure of Modbus Status Registers

0000 _H	(Reserved for system) ^(Note)
0100 _н 2 010F _н	Device status register 1 [DSS1]
0110 _н 2 011F _н	Device status register 2 [DSS2]
0120 _н 2 012F _н	Expansion device status register [DSSE]
0130 _н 2 013F _н	Position number status register Exected program number register (Servo press only) [POSS]
0140 _H 2 014F _H	Zone status register [ZONS]
0150 _н 2 015F _н	Input port monitor register [DIPM]
0160 _н 2 016F _н	Output port monitor register [DOPM]
0170 _н 2 017F _н	Special input port register [SIPM]
0180 _н 018F _н 0190 _н 019F _н	Expansion system status register [SSSE]
	Press program status register [PPST]
01А0 _Н 2 01АF _Н	Program judgement status register [PPJD]

The layout of the Modbus status registers is shown below.

	(Reserved for system) (Note)
0400 _н 2 040F _н	Device control register 1 [DRG1]
0410 _н 2 041F _н	Device control register 2 [DRG2]
0420 _н 2 042F _н	Expansion device control register [DRGE]
0430 _н 2 043F _н	Position number command register Program number command register (Servo press only) [POSR]
0490 _н 2 049F _н	Press program control register [PPCT]
$FFFF_{H}$	(Reserved for system) (Note)

4. Communication

Note Areas reserved for the system cannot be used for communication.

4.3.4 Detail of Modbus Status Registers

Address	•	Decembration	Quark et		Refe	rence	
[HEX]	Area name	Description	Symbol	RT	Ū	ASCII	
0000 to 00FF	Reserved for system						
0100	Device	EMG status	EMGS	Í		ř ř	
0101	status	Safety speed enabled status	SFTY				
0102	register 1	Controller ready status	PWR				
0103	(DSS1)	Servo ON status	SV				
0104		Missed work part in push-motion operation	PSFL				
0105		Major failure status	ALMH				
0106		Minor failure status	ALML				
0107		Absolute error status	ABER	-	40	0.4.40	
0108		Brake forced-release status	BKRL	5.3.	12	6.4.12	
0109		Cannot be used					
010A		Pause status	STP				
010B		Home return status	HEND				
010C		Position complete status	PEND				
010D		Load cell calibration complete	CEND				
010E		Load cell calibration status	CLBS				
010F		Cannot be used					
0110	Device	Cannot be used					
0111	status	Cannot be used					
0112	register 2	Load output judgment status	LOAD				
0113	(DSS2)	Torque level status	TRQS				
0114		Teaching mode status	MODS				
0115		Position-data load command status	TEAC				
0116		Jog+ status	JOG+				
0117		Jog- status	JOG-	-	40	0.4.40	
0118	1	Position complete 7	PE7	5.3.	13	6.4.13	
0119	1	Position complete 6	PE6				
011A	1	Position complete 5	PE5				
011B	1	Position complete 4	PE4				
011C	1	Position complete 3	PE3				
011D	1	Position complete 2	PE2				
011E		Position complete 1	PE1				
011F		Position complete 0	PE0				
0120	Expansion	Emergency stop status	EMGP				
0121	device status	Motor voltage low status	MPUV				
0122	register	Operation mode status	RMDS				
0123	(DSSE)	Cannot be used					
0124		Home return status	GHMS				
0125		Push-motion operation in progress	PUSH	E 0	14	6214	
0126		Excitation detection status	PSNS	5.3.	14	6.3.14	
0127		PIO/Modbus switching status	PMSS				
0128		Cannot be used					
0129		Cannot be used					
012A		Moving signal	MOVE				
012B to 012F		Cannot be used					

Address				Refe	rence	
[HEX]	Area name	Description	Symbol	RTU	ASCII	
0130 to 0135	Position	Cannot be used				
0136	number	Position complete number status bit 512	PM512			
0137	status	Position complete number status bit 256	PM256			
0138	register,	Position complete number status bit 128	PM128			
0139	Exected	Position complete number status bit 64	PM64			
013A	program	Position complete number status bit 32	PM32			
	number	Exected program number status bit 32				
013B	register	Position complete number status bit 16	PM16			
	(Servo	Exected program number status bit 16		5.3.22	6.4.22	
013C	Press)	Position complete number status bit 8	PM8			
0400	(POSS)	Exected program number status bit 8	DN44			
013D		Position complete number status bit 4	PM4			
013E		Exected program number status bit 4 Position complete number status bit 2	PM2			
013		Exected program number status bit 2	FIVIZ			
013F		Position complete number status bit 1	PM1			
0101		Exected program number status bit 1	1 101 1			
0140	Zone status	Cannot be used				
0141	register	Limit sensor output monitor 2	LS2			
0142	(ZONS)	Limit sensor output monitor 1	LS1			
0143		Limit sensor output monitor 0	LS0			
0144 to 0146		Cannot be used		5.3.21	6.4.21	
0147		Position zone output monitor	ZP			
0148 to 014D		Cannot be used				
014E		Zone output monitor 2	Z2			
014F		Zone output monitor 1	Z1			
0150 to 015F	Input port	PIO connector pin numbers 20A (IN15) to	/			
	monitor	PIO connector pin numbers 5A (IN0)		5.3.10	6.4.10	
	register			0.0.10	0.4.10	
	(DIPM)					
0160 to 016F	Output port	PIO connector pin numbers 16B (OUT15)				
	monitor	to PIO connector pin numbers 1B (OUT0)		5.3.11	6.4.11	
	register (DOPM)					
0170	Special input	Cannot be used				
0171	port monitor	Command pulse NP signal status	NP			
0172	register	Cannot be used				
0173	(SIPM)	Command pulse PP signal status	PP			
0174 to 0176		Cannot be used				
0177		Mode switch status	MDSW			
0178 to 017A		Cannot be used		5.3.20	6.4.20	
017B		Belt breakage sensor monitor	BLCT			
017C		Home-check sensor monitor	HMCK			
017D		Overtravel sensor	OT			
017E		Creep sensor	CREP			
017F		Limit sensor	LS			
0180 to 0183	Expansion	Cannot be used				
0184	system	Cold start level alarm	ALMC			
0185 to 0186	status	Cannot be used				
0187	register	RTC in use	RTC	5.3.23	6.4.23	
	(SSSE)	(ERC3, ACON-CA/CB, DCON-CA/CB,				
		PCON-CA/CFA/CB/CFB only)				
0188 to 018F		Cannot be used				

l

Address	A	Description	Queen had	Refe	rence	
[HEX]	Area name	Description	Symbol	RTU	ASCII	
0190	Press	Cannot be used				
0191	program	Waiting	WAIT			
0192	status	While in returning operation	RTRN			
0193	register	While in depression operation	DCMP			
0194	(Servo Press)	Pressurize during the stop	PSTP			
0195	(PPST)	While in pressurizing operation	PRSS			
0196		While in probing operation	SERC			
0197		While in approaching the operation	APRC	5.3.28	6.4.28	
0198 to 019A		Cannot be used				
019B		Program home return during the movement	MPHM	L		
019C		Program alarm	PALM			
019D		Program finished in normal condition	PCMP			
019E		While in executing program	PRUN			
019F		Program home position	PORG			
01A0 to 01A9	Press	Cannot be used	1 or to			
01AA	program	Load judgement NG	LJNG			
01AB	judgement	Load judgement OK	LJOK			
01AC	status	Position (distance) judgement NG	PJNG	5.3.29	6.4.29	
	register			5.5.29	0.4.29	
01AD	(Servo Press)	Position (distance) judgement OK	PJOK			
01AE	(PPJD)	Total judgement NG	JDNG			
01AF		Total judgement OK	JDOK			
01B0 to 03FF	Reserved for system					
0420 to 0425	Expansion	Cannot be used				
0426	device	Load cell calibration command	CLBR		6.5	
0427	control	PIO/Modbus switching specification	PMSL	5.4		
0428 to 042B	register	Cannot be used		5.4		
042C	(DRGE)	Deceleration stop	STOP			
042D to 042F		Cannot be used				
0430 to 0435	Position	Cannot be used				
0436	number	Position command bit 512	PC512			
0437	specification	Position command bit 256	PC256			
0438	register	Position command bit 128	PC128			
0439		Position command bit 64	PC64			
043A	Program number	Position command bit 32 Program number command bit 32	PC32			
043B	specification register	Position command bit 16 Program number command bit 16	PC16	4.3.2 [7]	4.3.2 [7]	
043C	(Servo Press) (POSR)	Position command bit 8 Program number command bit 8	PC8			
043D		Position command bit 4 Program number command bit 4	PC4			
043E		Position command bit 2 Program number command bit 2	PC2			
043F		Position command bit 1 Program number command bit 1	PC1			
0440 to 048F	Reserved for system					
0490 to 049A	Press	Cannot be used				
049B	program	Axis operation permission	ENMV			
049C	control	Program home return movement	PHOM	F 4	0.5	
049D	register	Search stop	SSTP	5.4	6.5	
049E	(PPCT)	Program compulsoly finish	FPST			
049F		Program start	PSTR			
04A0 to FFFF	Reserved for					
	system					

Serial Communication

Modbus RTU

5.1	Mess	Message Frames (Query and Response)5-1								
5.2	List o	f RTU Mode Queries ······5-5								
5.3	Data	and Status Reading (Function code 03) ······5-9								
	5.3.1	Reading Consecutive Multiple Registers5-9								
	5.3.2	Alarm Detail Description Reading (ALA0, ALC0, ALT0) 5-13								
	5.3.3	Position Data Description Reading (PCMD, INP, VCMD, ZNMP,								
		ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF) ······ 5-15								
	5.3.4	Total moving count Reading (TLMC)								
	5.3.5	Total moving distance Reading (ODOM) (in 1m units)5-20								
	5.3.6	Current Time Reading (TIMN)								
	5.3.7	Total FAN Driving Time Reading (TFAN)5-26								
	5.3.8	Current Position Reading (PNOW)								
	5.3.9	Currently generated alarm code Reading (ALMC)5-30								
	5.3.10	I/O Port Input Signal Status Reading (DIPM)								
	5.3.11	I/O Port Output Signal Status Reading (DOPM)								
	5.3.12	Controller Status Signal Reading 1 (DSS1) 5-42								
	5.3.13	Controller Status Signal Reading 2 (DSS2) 5-44								

	5.3.14	Controller Status Signal Reading 3 (DSSE)5-46
	5.3.15	Controller Status Signal Reading 4 (STAT)5-48
	5.3.16	Current Speed Reading (VNOW) ······ 5-50
	5.3.17	Current Ampere Reading (CNOW) ······5-52
	5.3.18	Deviation Reading (DEVI)
	5.3.19	Total Time after Power On Reading (STIM)
	5.3.20	Special Input Port Input Signal Status Reading (SIPM)
	5.3.21	Zone Output Signal Status Reading (ZONS)
	5.3.22	Positioning Completed Position Number Reading (POSS)
		Exected Program Number Register (Servo Press Type) (POSS) ··· 5-62
	5.3.23	Controller Status Signal Reading 5 (SSSE)
	5.3.24	Current Load ReadingSCON-CA/CB, PCON-CBP only 5-66
	5.3.25	Overload Level Monitor Reading (OLLV)
		SCON-CA/CAL/CB Only
	5.3.26	Press Program Alarm Code Reading (ALMP)
		Servo Press Type Only5-70
	5.3.27	Alarm Generated Press Program No. Reading (ALMP)
		Servo Press Type Only5-72
	5.3.28	Press Program Status Register Reading (PPST)
		Servo Press Type Only ·····5-74
	5.3.29	Press Program Judgement Status Register Reading (PPJD)
		Servo Press Type Only ·····5-76
5.4	Opera	ation Commands and Data Rewrite
	-	tion code 05)·····5-78
	5.4.1	Writing to Coil
	5.4.2	Safety Speed Enable/Disable Switching (SFTY)
	5.4.3	Servo ON/OFF (SON)
	5.4.4	Alarm Reset (ALRS)
	5.4.5	Brake Forced Release (BKRL) ······5-85
	5.4.6	Pause (STP)
	5.4.7	Home Return (HOME)
	5.4.8	Positioning Start Command (CSTR)
	5.4.9	Jog/Inch Switching (JISL)
	5.4.10	Teaching Mode Command (MOD)
	5.4.11	Position Data Load Command (TEAC)
	5.4.12	
	5.4.13	Jog- Command (JOG-) ······ 5-10

	5.4.14	Start Positions 0 to 7 (ST0 to ST7) Movement Command
		(Limited to solenoid valve mode)······ 5-103
	5.4.15	Load Cell Calibration Command (CLBR) ······ 5-105
	5.4.16	PIO/Modbus Switching Setting (PMSL) ······ 5-108
	5.4.17	Deceleration Stop (STOP) ······ 5-110
	5.4.18	Axis operation permission (ENMV) (Servo Press Type Only) \cdots 5-112
	5.4.19	Program Home Position Movement (PHOM)
		(Servo Press Type Only) ······ 5-114
	5.4.20	Search Stop (SSTP) (Servo Press Type Only) ······ 5-116
	5.4.21	Program compulsoly finish (FPST) (Servo Press Type Only) ···· 5-118
	5.4.22	Program Start (PSTR) (Servo Press Type Only)······ 5-120
5.5	Direc	t Writing of Control Information (Function code 06) ··· 5-122
	5.5.1	Writing to Registers
5.6	Direc	t Writing of Positioning Data (Function code 10) ······ 5-127
	5.6.1	Numerical Value Movement Command5-127
	5.6.2	Writing Position Table Data ······ 5-144

5.1 Message Frames (Query and Response)

The message frame of the serial communication in Modbus protocol should be as stated in the table below.

Start	Address	Function code	Data	CRC Check	End
Silent interval	1 byte	1 byte	n byte	2 byte	Silent interval

[1] Start

This field contains a silent interval (non communication time) of 3.5 characters or longer.

* 1 character = 10 bits

(Example) In case of 9600bps,

 $(10 \times 3.5) (10 \times 3.5)$ bits × 1/9600 bps = 3.65ms

Note If the response timeout error occurs, change parameter No. 45, "Silent interval multiplier" or parameter No. 17, "Min. delay for activating local transmitter" using the IAI teaching tool as required.

[2] Address

This field specifies the addresses of connected RC controllers (01_H to 10_H). Address = axis number + 1

Caution

• The address is not equal to the corresponding axis number: be careful when making settings.

[3] Function

The table below summarizes the function codes and functions that can be used with RC controllers.

Code [Hex]	Name	Function
01н	Read Coil Status	Read coils/DOs.
02н	Read Input Status	Read input statuses/DIs.
03н	Read Holding Registers	Read holding registers.
04н	Read Input Registers	Read input registers.
05н	Force Single Coil	Write one coil/DO.
<mark>06</mark> н	Preset Single Register	Write holding register.
07 _Н	Read Exception Status	Read exception statuses.
0F _H	Force Multiple Coils	Write multiple coils/DOs at once.
10 _H	Preset Multiple Registers	Write multiple holding registers at once.
11 _H	Report Slave ID	Query a slave's ID.
17 _H	Read / Write Registers	Read/write registers.

Note This manual explains about mark function codes.

Reference

• The ROBONET gateway supports three types of function codes (03_H, 06_H and 10_H). Refer to the [Separate ROBONET Instruction manual (ME0208)]

[4] Data

Use this field to add data specified by a function code. It is also allowed to omit data if data addition is not specified by a function code.

[5] CRC check

In the RTU mode, an error check field confirming to the CRC method is automatically ^(Note) included in order to check contents of all messages. Moreover, checking is carried out regardless of the parity check method of individual characters in messages.

The CRC check consists of 16-bit binary values. The CRC value is calculated by the sender that appends the CRC field to a message. The recipient recalculates the CRC value again while receiving the message, and compares the calculation result against the actual value received in the CRC field. If the two values do not match, an error will generate.

(Note) When using a PC or a PLC not supporting Modbus are used as the host, it is necessary to create a function for calculating CRC.

Programs written in C language are included in [8.1 CRC Check Calculation].

Generation polynomial equation: x16 + x15 + x2 + 1 (CRC-16 method)

Reference

• CRC calculation is automatically carried out with the FINS command supporting Modbus RTU communication of the PLC CJ1 series made by Omron.

[6] End

This field contains a silent interval (non communication time) of 3.5 characters or longer.

(Note) If the response timeout error occurs, change parameter No. 45, "Silent interval multiplier" or parameter No. 17, "Min. delay for activating local transmitter" using the IAI's teaching tools as required.

[7] Broadcast

It is possible to send a query containing same data to all connected axes by specifying the address 00_{H} . In this case, no response is returned from an RC controller.

Note, however, that the function codes etc. that can be used with this function are limited; care should be taken when using the function. Please check the function codes that can be used in [5.2 List of RTU Mode Queries].

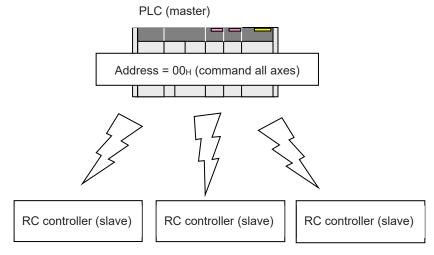


Fig. 5.1

Caution

• The sizes of send/receive buffers are set to 256 bytes for an RC controller, respectively. Make sure to keep the messages small enough such that messages sent from the host side do not exceed the receive buffer and data requests do not exceed send buffer.

5.2 List of RTU Mode Queries

FC: Function code

PIO: Parallel I/O (input/output of an I/O connector)

* The circle marks in the Combination use with PIO and Broadcast columns indicate queries that can be combined with PIO and in broadcast communication, respectively.

FC	Function	Symbol	Function Summary	Combination with PIO	Broad- cast	Reference
03	Multiple FC03 register reading	None	This function can be used to successively read multiple registers that use function 03.	0		5.3.1
03	Alarm detail description reading	ALA0 ALC0 ALT0	This bit reads the alarm codes, alarm addresses, detail codes and alarm occurrence time (passed time) that lately occurred.	0		5.3.2
03	Position data ^(Note 1) reading	Refer to right	This bit reads the indicated number in the position data. (PCMD, INP, VCMD, ZNMP, ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF)	0		5.3.3
03	Total moving count reading	TLMC	This bit reads the Total moving count.	0		5.3.4
03	Total moving distance reading	ODOM	This bit reads the Total moving distance in units of 1 m.	0		5.3.5
03	Current time reading	TIMN	This bit reads the current time. (PCON-CA/CFA/CB/CFB, ACON-CA/CB, DCON- CA/CB and SCON-CA/CAL/CB only)	0		5.3.6
03	Total FAN driving time reading	TFAN	This bit reads the Total FAN driving time. (PCON-CFA/CFB, SCON-CAL and SCON-CB (400W or more) only)	0		5.3.7
03	Current position reading	PNOW	This function reads the current actuator position in units of 0.01 mm.	0		5.3.8
03	Currently generated alarm code	ALMC	This function reads alarm codes that are presently detected.	0		5.3.9
03	I/O port input status reading	DIPM	This function reads the ON/OFF statuses of PIO input ports.	0		5.3.10
03	I/O port output status reading	DOPM	This function reads the ON/OFF statuses of PIO output ports.	0		5.3.11
03	Controller status signal reading 1 (device status 1) (Operation preparation status)	DSS1	 This function reads the following 14 statuses: (1) Emergency stop (2) Safety speed enabled/disabled (3) Controller ready (4) Servo ON/OFF (5) Missed work part in push-motion operation (6) Major failure (7) Minor failure (8) Absolute error (9) Brake (10) Pause (11) Home return completion (12) Position complete (13) Load cell calibration complete (14) Load cell calibration status 	0		5.3.12

Note 1 Once RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC read this address, they return "0_H" to all the addresses.

FC	Function	Symbol	Function Summary	Combination with PIO	Broad- cast	Reference
03	Controller status signal reading 2 (device status 2) (Operation preparation 1 status)	DSS2	 This function reads the following 15 statuses: (1) Enable (2) Load output judgment (check-range load current threshold) (3) Torque level (load current threshold) (4) Teaching mode (normal/teaching) (5) Position data load (normal/complete) (6) Jog+ (normal/command active) (7) Jog- (normal/command active) (8) Position complete 7 to 0 	0		5.3.13
03	Controller status signal reading 3 (extended device status) (Operation preparation 2 status)	DSSE	 This function reads the following 9 statuses: (1) Emergency stop (emergency stop input port) (2) Motor voltage low (3) Operation mode (AUTO/MANU) (4) Home return (5) Push-motion operation in progress (6) Excitation detection (7) PIO/Modbus switching (8) Position-data write completion status (9) Moving 	0		5.3.14
03	Controller status signal reading 4 (System status) (Controller status)	STAT	 This function reads the following 7 statuses: (1) Automatic servo OFF (2) Nonvolatile memory being accessed (3) Operation mode (AUTO/MANU) (4) Home return completion (5) Servo ON/OFF (6) Servo command (7) Drive source ON (normal/cut off) 	0		5.3.15
03	Current speed reading	VNOW	This function reads the current actuator speed in units of 0.01mm/s.	0		5.3.16
03	Current ampere reading	CNOW	This function reads the motor-torque current command value of the actuator in 1mA.	0		5.3.17
03	Deviation reading	DEVI	This function reads the deviation over a 1-ms period in pulses.	0		5.3.18
03	Total power on time reading	STIM	This function reads the deviation over a 1ms period in pulses.	0		5.3.19
03	Special input port input signal status reading (Sensor input status)	SIPM	 This function reads the following 8 statuses: (1) Command pulse NP (2) Command pulse PP (3) Mode switch (4) Belt breakage sensor (5) Home check sensor (6) Overtravel sensor (7) Creep sensor (8) Limit sensor 	0		5.3.20
03	Zone output signal reading	ZONS	 This function reads the following 6 statuses: (1) LS2 (PIO pattern solenoid valve mode (3-point type)) (2) LS1 (PIO pattern solenoid valve mode (3-point type)) (3) LS0 (PIO pattern solenoid valve mode (3-point type)) (4) Position zone (5) Zone 2 (6) Zone 1 	0		5.3.21
03	Positioning completed position number reading Exected program number register reading	POSS	This function reads the following next statuses: Complete position number bit 256 to 1 Exected program number bit 32 to1	0		5.3.22

5.2 List of RTU Mode Queries

FC	Function	Symbol	Function Summary	Combination with PIO	Broad- cast	Reference
03	Controller status signal reading 5	SSSE	 This function reads the following 2 statuses: (1) Cold start level alarm occurred/not occurred (2) RTC (calendar) function used/not used (ERC3, PCON-CA/CFA/CB/CFB, ACON-CA/CB and DCON-CA/CB only) 	0		5.3.23
03	Current load reading	FBFC	The current measurement on the load cell is read in units of 0.01N.	0		5.3.24
03	Press program status register reading	PPST	 This function reads the following 12 statuses: (1) Waiting (2) While in returning operation (3) While in depression operation (4) Pressurize during the stop (5) While in pressurizing operation (6) While in probing operation (7) While in approaching the operation (8) Program home return during the movement (9) Program alarm (10) Program finished in normal condition (11) While in excecuting program (12) Program home position 	0		5.3.28
03	Press program judgement status register	PPJD	 This function reads the following 6 statuses: (1) Load judgement NG (2) Load judgement OK (3) Position (distance) judgement NG (4) Position (distance) judgement OK (5) Total judgement NG (6) Total judgement OK 	0		5.3.29
05	Safety speed enable/disable switching	SFTY	This function issues a command to enable/disable the safety speed.		0	5.4.2
05	Servo ON/OFF	SON	This function issues a command to turn the servo ON/OFF.		0	5.4.3
05	Alarm reset	ALRS	This function issues a command to reset alarms/cancel the remaining travel.		0	5.4.4
05	Brake forced release	BKRL	This function issues a command to forcibly release the brake.		0	5.4.5
05	Pause	STP	This function issues a pause command.		0	5.4.6
05	Home return	HOME	This function issues a home return operation command.		0	5.4.7
05	Positioning start command	CSTR	This signal starts a position number specified movement.		0	5.4.8
05	Jog/inch switching	JISL	This function switches between the jogging mode and the inching mode		0	5.4.9
05	Teaching mode command	MOD	This function switches between the normal mode and the teaching mode		0	5.4.10
05	Position data load command	TEAC	This function issues a current position load command in the teaching mode.		0	5.4.11
05	Jog+ command	JOG+	This function issues a jogging/inching command in the direction opposite home.		0	5.4.12
05	Jog- command	JOG-	This function issues a jogging/inching command in the direction of home.		0	5.4.13
05	Start positions 0 to 7 (ST0 to ST7) movement command	ST0 to ST7	This function specifies position numbers effective only in the solenoid valve mode. The actuator can be operated with this command alone.		0	5.4.14
05	Load cell calibration command	CLBR	Calibrate the load cell.		0	5.4.15

FC	Function	Symbol	Function Summary	Combination with PIO	Broad- cast	Reference
05	PIO/Modbus switching setting	PMSL	This function issues a command to enable/disable PIO external command signals.		0	5.4.16
05	Deceleration stop	STOP	This function can decelerate the actuator to a stop.		0	5.4.17
05	Axis operation permission	ENMV	Setting can be made whether to permit the operation of the connected axes.		0	5.4.18
05	Program home return movement	PHOM	Movement is made to the program home position set in each press program.		0	5.4.19
05	Search stop	SSTP	It can be stopped after search operation is complete.		0	5.4.20
05	Program compulsoly finish	FPST	It compulsoly finishes the press program.		0	5.4.21
05	Program executed	PSTR	Press program execute it.		0	5.4.22
06	Direct writing of control information write	-	Change (write) the content of the controller's register.		0	5.5
10	Numerical value movement command	None	This function can be used to send the "target position", "positioning band", "speed", "acceleration/deceleration", "push", and "control setting" in a single message to operate the actuator. Normal movement, relative movement and push-motion operation are supported.		0	5.6.1
10	Writing position data table ^(Note 1)	None	This function can be used to change all data of the specified position number for the specified axis.		0	5.6.2
Indeter- minable	Exception response	None	This response will be returned when the message contains invalid data.			5.4.2

Note 1 In RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC, writing in this address is not available. They should return an exception response.

For exception response, refer to [7.1 Responses at Errors (Exception Responses)].

5.3 Data and Status Reading (Function code 03)

5.3.1 Reading Consecutive Multiple Registers

[1] Function

These registers read the contents of registers in a slave. This function is not supported in broadcast communication.

[2] Start address list

With RC controllers, the sizes of send/receive buffers are set to 256 bytes, respectively. Accordingly, a maximum of 125 registers' worth of data consisting of 251 bytes (one register uses two bytes), except 5 bytes (slave address + function code + number of data bytes + error check) of the above 256 bytes, can be queried in the RTU mode. In other words, all of the data listed below can be queried in a single communication.

It is also available to refer to multiple registers of the addresses in a row at one time of sending and receiving.

Address [H]	Symbol	Name	Sign	Register size	Byte
0500	ALA0	Alarm detail code		1	2
0501	ALA0	Alarm address		1	2
0502	-	Always "0"	-	1	2
0503	ALC0	Alarm code		1	2
0504, 0505	ALT0	Alarm occurrence time		2	4
	PCMD	Target position	0	2	4
	INP	Positioning band	0	2	4
1000 to 3FFF	VCMD	Speed command		2	4
(Note)	ZNMP	Individual zone boundary +	0	2	4
Assignment is	ZNLP	Individual zone boundary -	0	2	4
made in order	ACMD	Acceleration command		1	2
from small	DCMD	Deceleration command		1	2
position numbers.	PPOW	Push-current limiting value		1	2
numbere.	LPOW	Load current threshold		1	2
	CTLF	Control flag specification		1	2
8400, 8401	TLMC	Total moving count (Note1)		2	4
8402, 8403	ODOM	Total moving distance (Note1)		2	4
841E, 841F	TIMN	Current time (SCON-CA/CAL/CB only)		2	4
8420, 8421	TIMN	Current time (PCON-CA/CFA/CB/CFB only)		2	4
8422, 8423	TIMN	Current time (ACON-CA/CB, DCON-CA/C Bonly)		2	4
842A, 842B	TFAN	Total FAN driving time (SCON-CAL, SCON-CB (400W or more) only)		2	4
842E, 842F	TFAN	Total FAN driving time (PCON-CFA/CFB only)		2	4

Address [H]	Symbol	Name	Sign	Register size	Byte
9000, 9001	PNOW	Current position monitor	0	2	4
9002	ALMC	Currently generated alarm code query		1	2
9003	DIPM	Input port query		1	2
9004	DOPM	Output port monitor query		1	2
9005	DSS1	Device status query 1		1	2
9006	DSS2	Device status query 2		1	2
9007	DSSE	Expansion device status query		1	2
9008, 9009	STAT	System status query		2	4
900A, 900B	VNOW	Current speed monitor	0	2	4
900C, 900D	CNOW	Current ampere monitor	0	2	4
900E, 900F	DEVI	Deviation monitor	0	2	4
9010, 9011	STIM	System timer query		2	4
9012	SIPM	Special input port query		1	2
9013	ZONS	Zone status query		1	2
9014	POSS	Positioning complete position No. status query		1	2
9015	SSSE	Exected program No. register (Servo Press)		1	2
901E	FBFC	Expansion system status register	0	2	4
9020	OLLV	Current load data monitor		1	2
9022	ALMP	Overload level monitor		1	2
9023	ALMP	Press program alarm code		1	2
9024	PPST	Alarm generated press program No.		1	2
9025	PPJD	Pres program status register		1	2

Note 1 PCON-CA/CFA/CB/CFB/CYB/PLB/POB, ACON-CA/CB/CYB/PLB/POB, DCON-CA/CB/CYB /PLB/POB, SCON-CA/CAL/CB, ERC3, RCP6S, RCM-P6PC, RCM-P6AC, RCM-P6DC only

[3] Query format

In a query message, specify the address of the register from which to start reading data, and number of bytes in registers to be read.

1 register (1 address) = 2 bytes = 16-bit data

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	Arbitrary	Refer to [5.3.1 [2] Start address list].
Number of registers [H]	2	Arbitrary	Refer to [5.3.1 [2] Start address list].
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[4] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	-	Total number of bytes of registers specified in the query
Data 1 [H]	Number of bytes of register specified in the query	-	
Data 2 [H]	Number of bytes of register specified in the query	-	
Data 3 [H]	Number of bytes of register specified in the query	-	
Data 4 [H]	Number of bytes of register specified in the query	-	
:	:	-	
:	:	-	
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	Up to 256	_	

[5] Query sample

A sample query that queries addresses 9000_{H} to 9009_{H} of a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query) 01 03 90 00 00 0A E8 CD

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 00	
Number of registers [H]	00 0A	10 registers
Error check [H]	E8 CD	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 14 00 00 00 00 00 00 00 6E 00 60 18 80 00 23 C7 00 00 00 19 18 A6

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	14	$14_H \rightarrow 20$ bytes = 10 registers
Data 1 [H]	00 00 00 00	Current position monitor
Data 2 [H]	00 00	Present alarm code query
Data 3 [H]	00 00	Input port query
Data 4 [H]	6E 00	Output port query
Data 5 [H]	60 18	Device status 1 query
Data 6 [H]	80 00	Device status 2 query
Data 7 [H]	23 C7	Expansion device status query
Data 8 [H]	00 00 00 19	System status query
Error check [H]	18 A6	In accordance with CRC calculation
End	-	Silent interval

5.3.2 Alarm Detail Description Reading (ALA0, ALC0, ALT0)

[1] Function

This bit reads the alarm codes, alarm detail codes and alarm occurrence time that lately occurred. When any alarm is not issued, it is " 0_H ". For details, refer to [4.3.2 [1] to [3]].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	Arbitrary	Alarm detail code
Number of registers [H]	2	Arbitrary	Reading addresses 0500_{H} to 0505_{H}
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	0C	Reading 6 registers = 12 bytes
Data 1 [H]	2	Alarm detail code	Alarm detail code (0500 _H) [Hex]
Data 2 [H]	2	Alarm address	Alarm address (0501 _H) [Hex]
Data 3 [H]	4	Alarm code	Alarm code [Hex]
Data 4 [H]	4	Alarm occurrence time (Note1)	Alarm occurrence time [Hex]
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	Up to 256	_	

Note 1 The contents of display should differ between the models equipped with RTC (calendar feature) and those not equipped with it.

(1) When parameter is "Enable" in RTC equipped with RTC: Displays alarm occurrence time

(2) When parameter is "Disable" in RTC equipped with RTC: Displays time [ms] passed after the power is turned on

(3) For models not quipped with RTC: Displays time [ms] passed after the power is turned on

[4] Query sample

Here shows an example to read content of the alarm (Address 0500_{H} to 0505_{H}) occurred last in controller on Axis No. 0.

 Query (silent intervals are inserted before and after the query) 01 03 05 00 00 06 C5 04

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	05 00	
Number of registers [H]	00 06	6 registers
Error check [H]	C5 04	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 0C 00 00 FF FF 00 00 00 E8 2A D1 D0 7B C6 A2

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	0C	$0C_H \rightarrow 12$ bytes = 6 registers
Data 1 [H]	00 00	Alarm detail code
Data 2 [H]	FF FF	Alarm address
Data 3 [H]	00 00 00 E8	Alarm code
Data 4 [H]	2A D1 D0 7B	Alarm occurrence time
Error check [H]	C6 A2	In accordance with CRC calculation
End	-	Silent interval

Alarm detail code: 0000_H ···· No detail code

Alarm address: FFFF_H ······ Disable (no detail code)

Alarm code: $00E8_{H} = 0E8$ (Encoder AB phase break error) (Note 1)

Alarm occurrence time: $2AD1D07B_{H}$ (conversion) $\Rightarrow 2022/10/06 17:44:42$

(Refer to [4.3.2 [4]] for how to convert the alarm occurred time)

Note If the response example is simply an example and will vary depending on various conditions.

Note 1 For the detail of an alarm code, refer to the [instruction manual of the each controller].

5.3.3 Position Data Description Reading (PCMD, INP, VCMD, ZNMP, ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF)

[1] Function

This reads the value set in the indicated position number.

[2] Start address list

The buffer size of sending and receiving of RC Controller is 256 bytes for each.

Accordingly, a maximum of 125 registers' worth of data consisting of 251 bytes (one register uses two bytes), except 5 bytes (slave address + function code + number of data bytes + error check) of the above 256 bytes, can be queried in the RTU mode. In other words, all of the data listed below can be queried in a single communication.

It is also available to refer to multiple registers of the addresses in a row at one time of sending and receiving.

Address [H]	Top Address of Each Position Number [H]	Offset from Top Address [H]	Symbol	Registers name	sign	Register size	Byte	Unit
1000	Top Address =	+0	PCMD	Target position	0	2	4	0.01mm
to 3FFF	1000 _H + (16 × position	+2	INP	Positioning band	0	2	4	0.01mm
	No.)	+4	VCMD	Speed command		2	4	0.01mm/s
		+6	ZNMP	Individual zone boundary +	0	2	4	0.01mm
		+8	ZNLP	Individual zone boundary -	0	2	4	0.01mm
		+A	ACMD	Acceleration command		1	2	0.01G
		+B	DCMD	Deceleration command		1	2	0.01G
		+C	PPOW	Push-current limiting value		1	2	% (100% = FF _H)
		+D	LPOW	Load current threshold		1	2	% (100% = FF _H)
		+E	CTLF	Control flag specification		1	2	

In a query input, each address is calculated using the formula below:

1000_H + (16 × Position number) H + Address (Offset)_H

Example: Change the speed command register for position No. 200

1000_H + (16 × 200_D)_H + 4_H

$$= 1000_{\rm H} + (3200_{\rm D})_{\rm H} + 4_{\rm H}$$

$$= 1000_{\rm H} + C80_{\rm H} + 4_{\rm H}$$

Therefore, for Position No. 200, " $1C84_{H}$ " should be the input value in the query start address.

- Note The maximum position number varies depending on the controller model and the PIO pattern currently specified.
- Note RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC returns 0H in all the addresses once it reads this address.

[3] Query format

In a query message, specify the address of the register from which to start reading data, and number of bytes in registers to be read.

1 register (1 address) = 2 bytes = 16-bit data

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	Arbitrary	Defer to [5.2.2.12] Start address list]
Number of registers [H]	2	Arbitrary	Refer to [5.3.3 [2] Start address list]
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[4] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01н to 10н)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	-	Total number of bytes of registers specified in the query
Data 1 [H]	Number of bytes of register specified in the query	-	
Data 2 [H]	Number of bytes of register specified in the query	-	
Data 3 [H]	Number of bytes of register specified in the query	-	
Data 4 [H]	Number of bytes of register specified in the query	-	
:	:	-	
:	:	-	
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	Up to 256	-	

[5] Query sample

Shown below is an example for a use referring to the "target position", "positioning band" and "speed command" in Position No. 1 (Address 1010_H to 1015_H) on Axis No. 0 controller.

• Query (silent intervals are inserted before and after the query)

01 03 10 10 00 06 C0 CD

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	10 10	
Number of registers [H]	00 06	6 registers
Error check [H]	C0 CD	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

• Response (silent intervals are inserted before and after the response)

01 03 0C 00 00 27 10 00 00 00 0A 00 01 EC 30 6B 15

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	0C	$0C_H \rightarrow 12$ bytes = 6 registers
Data 1 [H]	00 00 27 10	Target position query
Data 2 [H]	00 00 00 0A	Positioning band query
Data 3 [H]	00 01 EC 30	Speed command query
Error check [H]	C6 A2	In accordance with CRC calculation
End	-	Silent interval

Target position "2710_H" \rightarrow Convert into decimal number \rightarrow 10000_D × [Unit 0.01mm] = 100.00mm Positioning band "A_H" \rightarrow Convert into decimal number \rightarrow 10_D × [Unit 0.01mm] = 0.10mm Speed command "1EC30_H" \rightarrow Convert into decimal number \rightarrow 126000_D × [Unit 0.01mm] = 1260.00mm

5.3.4 Total moving count Reading (TLMC)

[1] Function

This bit reads the total moving count. For details, refer to [4.3.2 [8]].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	84 00	Total moving count
Number of registers [H]	2	00 02	Reading addresses 8400_H to 8401_H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	04	4 bytes = Reading 2 registers
Data 1 [H]	2	Total moving count	Total moving count [Hex] (most significant digit)
Data 2 [H]	2	Total moving count	Total moving count [Hex] (least significant digit)
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	9	_	

[4] Query sample

Here shows an example to read the total moving count (Address 8400_{H} to 8401_{H}) of an actuator connected to the controller on Axis No. 0.

• Query (silent intervals are inserted before and after the query) 01 03 84 00 00 02 EC FB

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	84 00	Total moving count
Number of registers [H]	00 02	2 registers
Error check [H]	C0 CD	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 04 00 19 3E 10 3A 58

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04	$04_H \rightarrow 4$ bytes = 2 registers
Data 1 [H]	00 19	
Data 2 [H]	3E 10	
Error check [H]	3A 58	In accordance with CRC calculation
End	-	Silent interval

The total moving count is "193E10_H" \rightarrow Convert into decimal number \rightarrow 1654288 times

5.3.5 Total moving distance Reading (ODOM) (in 1m units)

[1] Function

The total moving distance (Address 8402_{H} to 8403_{H}) of an actuator connected to the controller on Axis No. 0 is to be read in the unit of 1m.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start		None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	84 02	Total moving distance
Number of registers [H]	2	00 02	Reading addresses 8402_{H} to 8403_{H}
Error check [H]	2	CRC (16 bits)	
End		None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start		None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	04	4 bytes = Reading 2 registers
Data 1 [H]	2	Total moving distance	Total moving distance [Hex] (most significant digit)
Data 2 [H]	2	Total moving distance	Total moving distance [Hex] (least significant digit)
Error check [H]	2	CRC (16 bits)	
End		None	Silent interval
Total number of bytes	9	-	

[4] Query sample

Here shows an example to read the total moving distance (Address 8402_{H} to 8403_{H}) of an actuator connected to the controller on Axis No. 0.

 Query (silent intervals are inserted before and after the query) 01 03 84 02 00 02 4D 3B

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	84 02	
Number of registers [H]	00 02	2 registers
Error check [H]	4D 3B	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 04 00 02 89 8C 3D C6

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04	$04_H \rightarrow 4$ bytes = 2 registers
Data 1 [H]	00 02	
Data 2 [H]	89 8C	
Error check [H]	3D C6	In accordance with CRC calculation
End	-	Silent interval

The Total moving distance is "2898C_H" \rightarrow Convert into decimal number \rightarrow 166284m

5.3.6 Current Time Reading (TIMN)

[1] Function

This bit reads the current time.

* This function is dedicated for PCON-CA/CFA/CB/CFB/CBP, ACON-CA/CB, DCON-CA/CB and SCON-CA/CAL/CB (including servo pressing type) only.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start		None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	Refer to remarks	841E: SCON-CA/CAL/CB 8420: PCON-CA/CFA/CB/CFB/CBP 8422: ACON-CA/CB、DCON-CA/CB
Number of registers [H]	2	00 02	Reading 2 registers form start address
Error check [H]	2	CRC (16 bits)	
End		None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start		None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	04	4 bytes = Reading 2 registers
Data [H]	4	Current time	Refer to [5.3.6 [4]] for conversion at time.
Error check [H]	2	CRC (16 bits)	
End		None	Silent interval
Total number of bytes	9	-	

[4] Conversion of Read Data into Time

The read data output the current time by the setting on the controller.

- (1) For the models that are equipped with the calendar function (RTC), when RTC is set effective, it shows the time of alarm issuance.
- (2) When RTC is set ineffective or for the models that is not equipped with RTC, it shows the passed time [s] since the power to the controller is turned on.
- (1) How current time is calculated

The data of current time shows the seconds passed from the origin time (00hr:00min:00sec 1January2000).

Passed second from the origin time is expressed with S, passed minute with M, passed hour with H, passed day with D and passed year with Y, and the calculation is conducted with a formula as shown below:

- 1) Passed second S should be converted into a decimal number.
- 2) M, H, D, Y and L should be figured out based on S.
 - M = S/60 (decimal fraction to be rounded down)
 - H = M/60 (decimal fraction to be rounded down)
 - D = H/24 (decimal fraction to be rounded down)
 - Y = D/365.25 (decimal fraction to be rounded down)
 - L (Leap year) = Y/4 (decimal fraction to be rounded up)
- 3) SA, MA, HA and DA should be figured out.
 - Assuming the second of time is SA, minute is MA, hour is HA, passed day in this year is DA and year is YA, the time can be calculated with a formula as shown below:
 - SA = Remainder of S/60
 - MA = Remainder of M/60
 - HA = Remainder of H/24

 $DA = D - (Y \times 365 + L)$

* Year and day can be figured out by subtracting the number of days in each month from DA.

YA = Y + 2000 (A.D.)

Example of Calculation: When current time data is output as $2AD2F1CE_H$

- 1) Convert into decimal number: S = 2AD2F1CE_H \Rightarrow 718467534
- 2) Calculate M, H, D, Y and L.
 - M = 718467534/60 = 11974458 (decimal fraction to be rounded down)
 - H = 11974458/60 = 199574 (decimal fraction to be rounded down)

D = 199574/24 = 8315 (decimal fraction to be rounded down)

Y = 8315/365.25 = 22 (decimal fraction to be rounded down)

L = 22/4 = 6 (decimal fraction to be rounded up)

- 3) SA, MA, HA and DA should be figured out.
 - SA = Remainder of 718467534/60 = 54

MA = Remainder of 11974458/60 = 18

- HA = Remainder of 199574/24 = 14
- $\mathsf{DA} = 8315 (2 \times 365 + 6)$

= 279 (279 days has passed in 2022 year and the time of alarm issuance is on the day 280.)

Year and day = 280 - {31 (Jan) - 29 (Feb) - 31 (Mar) - 30 (Apr) - 31 (May)

- 30 (Jun) - 31 (Jul) - 31 (Aug) - 30 (Sep)}

= 7 (As the number reduced for October would make a negative number, the read out date should be October 7)

YA = 22 + 2000 = 2022

As figured out with the calculation above, the current time is 14:18:54 7 Oct2022.

(2) How to Calculate Current time

Example of Calculation: When current time data is output as E1B8B_H

SA = Remainder of 924555/60 = 15

MA = Remainder of 15409/60 = 49

Convert into decimal number: $E1B8B_H \Rightarrow 924555$

Therefore, it means 924555s (15min. 49sec. 256h) has passed since the power was turned on.

[5] Query sample

A sample query that reads the current Time of PCON-CB (Addresses 8420_{H} to 8421_{H}) with axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 03 84 20 00 02 ED 31

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	84 20	
Number of registers [H]	00 02	2 registers
Error check [H]	ED 31	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 04 2A D2 F1 CE 96 16

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04	$04_H \rightarrow 4$ bytes = 2 registers
Data [H]	2A D2 F1 CE	Current time
Error check [H]	96 16	In accordance with CRC calculation
End	-	Silent interval

Current time is 14:18:54 October 7, 2022

5.3.7 Total FAN Driving Time Reading (TFAN)

[1] Function

This bit reads the Total FAN driving time (in 1s units)

* This function is dedicated for PCON- CFA/ CFB, SCON-CAL, SCON-CB (400W or more) only.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start		None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	Refer to remarks	842: SCON-CAL, SCON-CB (400W or more) 842E: PCON-CFA/CFB
Number of registers [H]	2	00 02	Reading 2 registers form start address
Error check [H]	2	CRC (16 bits)	
End		None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data itemsRTU mode(number of bytes)8-bit data		Remarks
Start		None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	04	4 bytes = Reading 2 registers
Data 1 [H]	2	Total FAN driving time	Total FAN driving time [Hex] (most significant digit)
Data 2 [H]	2 Total FAN driving time		Total FAN driving time [Hex] (least significant digit)
Error check [H]	2 CRC (16 bits)		
End		None	Silent interval
Total number of bytes	9	-	

[4] Query sample

A sample query that reads the Total FAN driving time (Address $842E_{H}$ to $842F_{H}$) of a PCON-CFB with axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 03 84 2E 00 02 8C F2

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	84 2E	
Number of registers [H]	00 02	2 registers
Error check [H]	8C F2	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 04 00 00 02 AF BB 2F

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04	$04_H \rightarrow 4$ bytes = 2 registers
Data 1 [H]	00 00	Total FAN driving time [Hex] (most significant digit)
Data 2 [H]	02 AF	Total FAN driving time [Hex] (least significant digit)
Error check [H]	BB 2F	In accordance with CRC calculation
End	-	Silent interval

Total FAN driving time is "000002AF_H" \rightarrow Convert into decimal number \rightarrow 687s

5.3.8 Current Position Reading (PNOW)

[1] Function

This bit reads the current position in units of 0.01mm. The sign is effective.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 00	Current position monitor
Number of registers [H]	2	00 02	Reading 2 registers form start address
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01н to 10н)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	04	4 bytes = Reading 2 registers
Data 1 [H]	2	In accordance with the current value	Current position data [Hex] (most significant digit)
Data 2 [H]	2	In accordance with the current value	Current position data [Hex] (least significant digit)
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	9	-	

[4] Query sample

A sample query that reads the current position (Address 9000_{H} to 9001_{H}) in a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query)

01 03 90 00 00 02 E9 0B

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 00	
Number of registers [H]	00 02	2 registers
Error check [H]	E9 0B	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

• Response (silent intervals are inserted before and after the response)

01 03 04 00 00 0B FE 7C 83

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04	$04_H \rightarrow 4$ bytes = 2 registers
Data 1 [H]	00 00	Current position data [Hex] (most significant digit)
Data 2 [H]	0B FE	Current position data [Hex] (least significant digit)
Error check [H]	7C 83	In accordance with CRC calculation
End	-	Silent interval

Example 1) The current position is "00000BFE_H" \rightarrow Convert into decimal number \rightarrow 3070 (× 0.01mm) \rightarrow Therefore, the current position is 30.7mm.

Example 2) When the current position reading (negative position) is "FFFFFF5_H" \rightarrow FFFFFFF_H -

FFFFFF5_H + 1 (make sure to add 1) Convert into decimal number \rightarrow 11 (× 0.01mm) \rightarrow Therefore, the current position is -0.11mm.

5.3.9 Currently generated alarm code Reading (ALMC)

[1] Function

This query reads the code indicating the normal status or alarm status (cold start level,

operation cancellation level and message level) of the controller.

In the normal status, " 00_H " is stored.

For details on alarm codes, refer to the [Instruction manual of each controller].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 02	Currently generated alarm code
Number of registers [H]	2	00 01	Reading address 9002 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks		
Start		None	Silent interval		
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)		
Function code [H]	1	03	Register reading code		
Number of data bytes [H]	1	02	2 bytes = Reading 1 register		
Data [H]	2	Alarm code	Alarm code [Hex]		
Error check [H]	2	CRC (16 bits)			
End		None	Silent interval		
Total number of bytes	7	-			

Note 1 The contents of display should differ between the models equipped with RTC (calendar feature) and those not equipped with it.

(1) When parameter is "Enable" in RTC equipped with RTC: Displays alarm occurrence time

(2) When parameter is "Disable" in RTC equipped with RTC: Displays time [ms] passed after the power is turned on

(3) For models not quipped with RTC: Displays time [ms] passed after the power is turned on

A sample query that reads the alarm code (Address 9002_H) of a controller with axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 03 90 02 00 01 08 CA

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 02	Currently generated alarm code
Number of registers [H]	00 01	1 register
Error check [H]	08 CA	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 02 00 D9 79 DE

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	00 D9	Alarm code
Error check [H]	79 DE	In accordance with CRC calculation
End	-	Silent interval

Alarm code: $00D9_{H} = 0D9$ (Software stroke limit over error) (Note 1)

Note If the response example is simply an example and will vary depending on various conditions.

Note 1 For details on alarm codes, refer to the [Instruction manual of each controller].

5.3.10 I/O Port Input Signal Status Reading (DIPM)

[1] Function

This query reads the port input value of the RC controller regardless of the PIO pattern. The status of the port to which a signal is currently input as recognized by the RC controller is read.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks		
Start	-	None	Silent interval		
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)		
Function code [H]	1	03	Register reading code		
Start address [H]	2	90 03	Input port monitor register		
Number of registers [H]	2	00 01	Reading address 9003 _H		
Error check [H]	2	CRC (16 bits)			
End	-	None	Silent interval		
Total number of bytes	8	-			

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks		
Start		None	Silent interval		
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)		
Function code [H]	1	03	Register reading code		
Number of data bytes [H]	1	02	2 bytes = Reading 1 register		
Data [H]	2	Port input value	Port input value [Hex]		
Error check [H]	2	CRC (16 bits)			
End		None	Silent interval		
Total number of bytes	7	-			

A sample query that reads the input port (Address 9003_{H}) of a controller with axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query)

<u>01 03 90 03 00 01 59 0A</u>

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 03	Input port monitor register
Number of registers [H]	00 01	1 register
Error check [H]	59 0A	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

• Response (silent intervals are inserted before and after the response)

01 03 02 90 00 D4 44

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	90 00	Input port signal status
Error check [H]	D4 44	In accordance with CRC calculation
End	-	Silent interval

The input port data area is $9000_{\text{H}} \rightarrow \text{Convert}$ into binary number: $10010000000000_{\text{b}}$

1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
IN15	IN14	IN13	IN12	IN11	IN10	IN9	IN8	IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0

[5] Port assignment

For details, refer to the [instruction manual of each RC controller].

- Write the port assignment of PIO patterns to each RC controller.
- 0 indicates that response data is always "0".

			Other than PCON-C/CF					
			(Pulse Train Mode)					
Port	0	1	2	3	4	5	6	7
IN0	PC1	PC1	PC1	PC1	ST0	ST0	SON	SON
IN1	PC2	PC2	PC2	PC2	ST1	ST1	RES	RES
IN2	PC4	PC4	PC4	PC4	ST2	ST2	HOME	HOME
IN3	PC8	PC8	PC8	PC8	ST3	0	TL	TL
IN4	PC16	PC16	PC16	PC16	ST4	0	CSTP	CSTP
IN5	PC32	PC32	PC32	PC32	ST5	0	DCLR	DCLR
IN6	0	MODE	PC64	PC64	ST6	0	BKRL	BKRL
IN7	0	JISL	PC128	PC128	0	0	RMOD	RMOD
IN8	0	JOG+	0	PC256	0	0	0	RSTR
IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	0	0
IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	0	0
IN11	HOME	HOME	HOME	HOME	HOME	0	0	0
IN12	*STP	*STP	*STP	*STP	*STP	0	0	0
IN13	CSTR	CSTR/ PWRT	CSTR	CSTR	0	0	0	0
IN14	RES	RES	RES	RES	RES	RES	0	0
IN15	SON	SON	SON	SON	SON	SON	0	0

			P	CON-CY	PCON-PLB/POB			PCON-PL/PO				
			PI	O patter	'n	-		P	O patter	n	PIO p	attern
Port	0	1	2	3	4	5	6	0	1	2	0	1
IN0	PC1	ST0	ST0	ST0	ST0	1)		SON	SON		SON	SON
IN1	PC2	ST1	ST1	0	ST1	(Note	tion	RES	RES	u	TL	TL
IN2	PC4	ST2	ST2	0	ASTR		ica	HOME	HOME	catic	HOME	HOME
IN3	PC8	ST3	0	0	0	Number	ommunication (Note 2)	TL	TL	ommunication (Note 2)	RES	RES/ DCLR
IN4	HOME	ST4	SON	SON	SON	ed	σŪ	CSTP	CSTP	id ⊘	0	0
IN5	*STR	ST5	0	*STR	*STR	Selected	Serial mman	DCLR	DCLR	' Serial C ommand	0	0
IN6	CSTR	ST6	0	0	0			BKRL	BKRL	/ Se	0	0
IN7	RES	RES	RES	RES	RES	A	C C	0	RSTR	ol by C	0	0
IN8 to IN15	0	0	0	0	0	0	Control	0	0	Control by Co	0	0

(Note 1) Any number can be selected for those except for Command Position Number Signal and CSTR Signal. For details, refer to the [PCON-CYB/PLB/POB instruction manual (ME0353)].

(Note 2) PLB/POB is complied with the serial communication mode in the firmware version PCON (v0005) or later.

Even though the I/O port input signal status is read out in the condition of PIO Pattern 6, the values should all be 0.

		ACON		Other than ACON-C/CF				
			(Pulse Train Mode)					
Port	0	1	2	3	4	5	6	7
IN0	PC1	PC1	PC1	PC1	ST0	ST0	SON	SON
IN1	PC2	PC2	PC2	PC2	ST1	ST1	RES	RES
IN2	PC4	PC4	PC4	PC4	ST2	ST2	HOME	HOME
IN3	PC8	PC8	PC8	PC8	ST3	0	TL	TL
IN4	PC16	PC16	PC16	PC16	ST4	0	CSTP	CSTP
IN5	PC32	PC32	PC32	PC32	ST5	0	DCLR	DCLR
IN6	0	MODE	PC64	PC64	ST6	0	BKRL	BKRL
IN7	0	JISL	PC128	PC128	0	0	RMOD	RMOD
IN8	0	JOG+	0	PC256	0	0	0	RSTR
IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	0	0
IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	0	0
IN11	HOME	HOME	HOME	HOME	HOME	0	0	0
IN12	*STP	*STP	*STP	*STP	*STP	0	0	0
IN13	CSTR	CSTR/ PWRT	CSTR	CSTR	0	0	0	0
IN14	RES	RES	RES	RES	RES	RES	0	0
IN15	SON	SON	SON	SON	SON	SON	0	0

		Α	CON-CY	B, DCO	N-CYB			ACON, I	CON-PLB	POB	ACON-PL/PO		
			PIC) pattern				PI	O pattern		PIO pattern		
Port	0	1	2	3	4	5	6	0	1	2	0	1	
IN0	PC1	ST0	ST0	ST0	ST0	1)	_	SON	SON	_	SON	SON	
IN1	PC2	ST1	ST1	0	ST1	(Note	tion	RES	RES	tion	TL	TL	
IN2	PC4	ST2	ST2	0	ASTR		ica	HOME	HOME	ica	HOME	HOME	
IN3	PC8	ST3	0	0	0	Number	Communication d ^(Note 2)	TL	TL	ommunication (Note 2)	RES	RES/ DCLR	
IN4	HOME	ST4	SON	SON	SON		0 g C	CSTP	CSTP	ОÞ	0	0	
IN5	*STR	ST5	0	*STR	*STR	Selected	Serial C ommand	DCLR	DCLR	Serial	0	0	
IN6	CSTR	ST6	0	0	0	Sel	Se	BKRL	BKRL		0	0	
IN7	RES	RES	RES	RES	RES	A	<u>à</u> ũ	0	RSTR	<u>à</u> ù	0	0	
IN8 to IN15	0	0	0	0	0	0	Control	0	0	Control	0	0	

(Note 1) Any number can be selected for those except for Command Position Number Signal and CSTR Signal. For details, refer to the [ACON-CYB/PLB/POB and DCON-CYB/PLB/POB instruction manual (ME0354)].

(Note 2) PLB/POB is complied with the serial communication mode in the firmware version ACON (v0002) and DCON (v0001) or later.

Even though the I/O port input signal status is read out in the condition of PIO Pattern 6, the values should all be 0.

		5	SCON-C/C	A/CAL/C	В		SCON	-CA/CB	SCON-C	C/CA/CB
				PIO p	attern				(Pulse Tra	ain Mode)
Port	0	1	2	3	4	5	6	7	0	1 ^(Note 1)
IN0	PC1	PC1	PC1	PC1	ST0	ST0	PC1	ST0	SON	SON
IN1	PC2	PC2	PC2	PC2	ST1	ST1	PC2	ST1	RES	RES
IN2	PC4	PC4	PC4	PC4	ST2	ST2	PC4	ST2	HOME	HOME
IN3	PC8	PC8	PC8	PC8	ST3	0	PC8	ST3	TL	TL
IN4	PC16	PC16	PC16	PC16	ST4	0	PC16	ST4	CSTP	CSTP
IN5	PC32	PC32	PC32	PC32	ST5	0	0	0	DCLR	DCLR
IN6	0	MODE	PC64	PC64	ST6	0	0	0	BKRL	BKRL
IN7	0	JISL	PC128	PC128	0	0	0	0	RMOD	RMOD
IN8	0	JOG+	0	PC256	0	0	CLBR	CLBR	0	RSTR
IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	BKRL	BKRL	0	0
IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	0	0
IN11	HOME	HOME	HOME	HOME	HOME	0	HOME	HOME	0	0
IN12	*STP	*STP	*STP	*STP	*STP	0	*STP	*STP	0	0
IN13	CSTR	CSTR/ PWRT	CSTR	CSTR	0	0	CSTR	0	0	0
IN14	RES	RES	RES	RES	RES	RES	RES	RES	0	0
IN15	SON	SON	SON	SON	SON	SON	SON	SON	0	0

(Note 1) This mode is not equipped in SCON-C/CA.

	SCON-CB		ERC2 (P	IO Type)		ERC	C3 (PIO Ty	/pe)
	Servo press		PIO p	attern		P	IO patter	n
Port	-	0	0 1 2 3		0	1	2	
IN0	PC1	PC1 ST0 PC1		PC1	PC1	ST0	PC1	
IN1	PC2	PC2	ST1	PC2	PC2	PC2	ST1	PC2
IN2	PC4	PC4	ST2	PC4	PC4	PC4	ST2	PC4
IN3	PC8	HOME	0	PC8	PC8	HOME	0	PC8
IN4	PC16	CSTR	RES	CSTR	CSTR	CSTR	RES	CSTR
IN5	PC32	*STP	*STP	*STP	*STP	*STP	*STP	*STP
IN6	PSTR	0	0	0	0	0	0	0
IN7	RHOM	0	0	0	0	0	0	0
IN8	ENMV	0	0	0	0	0	0	0
IN9	FPST	0	0	0	0	0	0	0
IN10	CLBR	0	0	0	0	0	0	0
IN11	BKRL	0	0	0	0	0	0	0
IN12	RMOD	0	0	0	0	0	0	0
IN13	HOME	0	0	0	0	0	0	0
IN14	RES	0	0	0	0	0	0	0
IN15	SON	0	0	0	0	0	0	0

5.3.11 I/O Port Output Signal Status Reading (DOPM)

[1] Function

This query reads the port output value of the RC controller regardless of the PIO pattern.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks		
Start	-	None	Silent interval		
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)		
Function code [H]	1	03	Register reading code		
Start address [H]	2	9004	Output port monitor register		
Number of registers [H]	2	0001	Reading addresses 9004 _H		
Error check [H]	2	CRC (16 bits)			
End	-	None	Silent interval		
Total number of bytes	8	-			

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start		None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	02	2 bytes = Reading 1 register
Data [H]	2	Port output value	Port output value [Hex]
Error check [H]	2	CRC (16 bits)	
End		None	Silent interval
Total number of bytes	7	-	

A sample query that output port (Address 9004_{H}) of a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query)

01 03 90 04 00 01 E8 CB

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 04	Output port monitor register
Number of registers [H]	00 01	1 register
Error check [H]	E8 CB	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 02 7E 80 98 44

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	7E 80	Output port signal status
Error check [H]	98 44	In accordance with CRC calculation
End	-	Silent interval

The input port data area is $7E80_{\text{H}} \rightarrow \text{Convert}$ into binary number: 011111101000000_b

0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0
OUT15	OUT14	OUT13	OUT12	OUT11	OUT10	OUT9	OUT8	OUT7	OUT6.	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0

[5] Port assignment

For details, refer to the [instruction manual for each RC controller].

- Write the port assignment of PIO patterns to each RC controller.
- 0 indicates that response data is always "0".

		PCC	N-C/CF/CA	CFA/CB/	CFB		Other than	PCON-C/CF
			PIO pa	attern			(Pulse Tra	ain Mode)
Port	0	1	2	3	4	5	6	7
OUT0	PM1	PM1	PM1	PM1	PE0	LS0	PWR	PWR
OUT1	PM2	PM2	PM2	PM2	PE1	LS1	SV	SV
OUT2	PM4	PM4	PM4	PM4	PE2	LS2	INP	INP
OUT3	PM8	PM8	PM8	PM8	PE3	0	HEND	HEND
OUT4	PM16	PM16	PM16	PM16	PE4	0	TLR	TLR
OUT5	PM32	PM32	PM32	PM32	PE5	0	*ALM	*ALM
OUT6	MOVE	MOVE	PM64	PM64	PE6	0	*EMGS	*EMGS
OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	RMDS	RMDS
OUT8	PZONE/ ZONE2	PZONE/ ZONE1	PZONE/ ZONE1	PM256	PZONE/ ZONE2	PZONE/ ZONE2	ALM1	ALM1
OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	ALM2
OUT10	HEND	HEND	HEND	HEND	HEND	HEND	ALM4	ALM4
OUT11	PEND	PEND/ WEND	PEND	PEND	PEND	0	ALM8	ALM8
OUT12	SV	SV	SV	SV	SV	SV	*ALML	*ALML
OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	0	REND
OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	ZONE1	ZONE1
OUT15 (Note 1)	LOAD/ TRQS/ *ALML	*ALML	LOAD/ TRQS/ *ALML	Load/ Trqs/ *Alml	LOAD/ TRQS/ *ALML	*ALML	ZONE2	ZONE2

(Note 1) Signals available for output may differ depending on models.

For details, refer to the [Instruction manual of each controller].

			PCO	N-CYB				PCON	I-PLB/PO	В	PCON-	PL/PO
			PIO p	oattern				PIO	pattern		PIO pattern	
Port	0	1	2	3	4	5	6	0	1	2	0	1
OUT0	PM1	PE0	LS0	LS0/ PE0	LS0/ PE0	2)	(Note 3)	PWR	PWR	(Note 3)	SV	SV
OUT1	PM2	PE1	LS1	LS1/ PE1	LS1/ PE1	ir (Note	Command	SV	SV	Command	INP	INP/ TLR
OUT2	PM4	PE2	LS2	PSFL	PSFL	Number		INP	INP	_	HEND	HEND
OUT3	PM8	PE3	HEND	HEND	HEND	Nur	ation	HEND	HEND	ation	*ALM	*ALM
OUT4	HEND	PE4	SV	SV	SV		Inica	TLR	TLR	Inica	0	0
OUT5	PZONE/ ZONE1	PE5	PZONE/ ZONE1	PZONE/ ZONE1	PZONE/ ZONE1	Selected	Communication	ZONE 1	ZONE 1	Communication	0	0
OUT6	PEND	PE6	*ALML	*ALML	*ALML	A S	Serial (*ALML	REND	Serial (0	0
OUT7	*ALM	*ALM	*ALM	*ALM	*ALM			*ALM	*ALM		0	0
OUT8 to OUT15	0	0	0	0	0	0	Control by	0	0	Control by	0	0

(Note 2) Any number can be selected for those except for Complete Position Number Signal and PEND Signal. For details, refer to [PCON-CYB/PLB/POB instruction manual (ME0353)].

(Note 3) PLB/POB is complied with the serial communication mode in the firmware version PCON (v0005) or later.

Even though the I/O port output signal status is read out in the condition of PIO Pattern 6, the values should all be 0.

		ACON	C/CA/CB、	DCON-C/	CA/CB		Other than ACON-C/CF		
			PIO pa	attern			(Pulse Tra	ain Mode)	
Port	0	1	2	3	4	5	6	7	
OUT0	PM1	PM1	PM1	PM1	PE0	LS0	PWR	PWR	
OUT1	PM2	PM2	PM2	PM2	PE1	LS1	SV	SV	
OUT2	PM4	PM4	PM4	PM4	PE2	LS2	INP	INP	
OUT3	PM8	PM8	PM8	PM8	PE3	0	HEND	HEND	
OUT4	PM16	PM16	PM16	PM16	PE4	0	TLR	TLR	
OUT5	PM32	PM32	PM32	PM32	PE5	0	*ALM	*ALM	
OUT6	MOVE	MOVE	PM64	PM64	PE6	0	*EMGS	*EMGS	
OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	RMDS	RMDS	
OUT8	PZONE/ ZONE2	PZONE/ ZONE1	PZONE/ ZONE1	PM256	PZONE/ ZONE2	PZONE/ ZONE2	ALM1	ALM1	
OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	ALM2	
OUT10	HEND	HEND	HEND	HEND	HEND	HEND	ALM4	ALM4	
OUT11	PEND	PEND/ WEND	PEND	PEND	PEND	0	ALM8	ALM8	
OUT12	SV	SV	SV	SV	SV	SV	*ALML	*ALML	
OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	0	REND	
OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	ZONE1	ZONE1	
OUT15 (Note 1)	*BALM /*ALML	*BALM /*ALML	*BALM /*ALML	*BALM /*ALML	*BALM /*ALML	*BALM /*ALML	ZONE2	ZONE2	

(Note 1) The available output should differ depending on models.

For details, refer to the [Instruction manual of each controller].

		A	ACON-CYI	B、 DCOI	N-CYB			ACON、	DCON-P	LB/POB	ACON	-PL/PO
			PIC) pattern				F	PIO patter	n	PIO pattern	
Port	0	1	2	3	4	5	6	0	1	2	0	1
OUT0	PM1	PE0	LS0	LS0/ PE0	LS0/ PE0	e 2)	ote 3)	PWR	PWR	ote 3)	SV	SV
OUT1	PM2	PE1	LS1	LS1/ PE1	LS1/ PE1	Der (Note	Command ^{(Note}	SV	SV	mand ^{(N}	INP	INP/ TLR
OUT2	PM4	PE2	LS2	PSFL	PSFL	Number	Com	INP	INP	Com	HEND	HEND
OUT3	PM8	PE3	HEND	HEND	HEND			HEND	HEND	ion (*ALM	*ALM
OUT4	HEND	PE4	SV	SV	SV	elected	nicat	TLR	TLR	licat	0	0
OUT5	PZONE/ ZONE1	PE5	PZONE/ ZONE1	PZONE/ ZONE1	PZONE/ ZONE1	A Sele	Communication	ZONE 1	ZONE 1	Serial Communication Command Mote	0	0
OUT6	PEND	PE6	*ALML	*ALML	*ALML		Serial (*ALML	REND	rial (0	0
OUT7	*ALM	*ALM	*ALM	*ALM	*ALM			*ALM	*ALM		0	0
OUT8 to OUT15	0	0	0	0	0	0	Control by	0	0	Control by	0	0

(Note 2) Any number can be selected for those except for Complete Position Number Signal and PEND Signal. For details, refer to [ACON-CYB/PLB/POB and DCON-CYB/PLB/POB instruction manual (ME0353)].

(Note 3) PLB/POB is complied with the serial communication mode in the firmware version ACON (v0002) and DCON (v0001) or later.

Even though the I/O port output signal status is read out in the condition of PIO Pattern 6, the values should all be 0.

		ç	SCON-C/C	A/CAL/CE	3		SCON-	CA/CB	SCON-C	/CA/CB
				PIO pa	attern				(Pulse Tra	in Mode)
Port	0	1	2	3	4	5	6	7	0	1 (Note 1)
OUT0	PM1	PM1	PM1	PM1	PE0	LS0	PM1	PE0	PWR	PWR
OUT1	PM2	PM2	PM2	PM2	PE1	LS1	PM2	PE1	SV	SV
OUT2	PM4	PM4	PM4	PM4	PE2	LS2	PM4	PE2	INP	INP
OUT3	PM8	PM8	PM8	PM8	PE3	0	PM8	PE3	HEND	HEND
OUT4	PM16	PM16	PM16	PM16	PE4	0	PM16	PE4	TLR	TLR
OUT5	PM32	PM32	PM32	PM32	PE5	0	TRQS	TRQS	*ALM	*ALM
OUT6	MOVE	MOVE	PM64	PM64	PE6	0	LOAD	LOAD	*EMGS	*EMGS
OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	CEND	CEND	RMDS	RMDS
OUT8	PZONE/	PZONE/	PZONE/	PM256	PZONE/	PZONE/	PZONE/	PZONE/	ALM1	AL N44
0018	ZONE2	ZONE1	ZONE1	FIVIZO	ZONE2	ZONE2	ZONE1	ZONE1	ALIVII	ALM1
OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	ALM2
OUT10	HEND	HEND	HEND	HEND	HEND	HEND	HEND	HEND	ALM4	ALM4
OUT11	PEND	PEND/ WEND	PEND	PEND	PEND	0	PEND	PEND	ALM8	ALM8
OUT12	SV	SV	SV	SV	SV	SV	SV	SV	*OVLW/ *ALML ^(Note 2)	*OVLW/ *ALML
OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	0	REND
OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	ZONE1	ZONE1
OUT15	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM	ZONE2	ZONE2

(Note 1) This mode is not equipped in SCON-C/CA.

(Note 2) SCON-C is not equipped with *OVLW and *ALML outputs.

	SCON-CB		ERC2 (P	IO Type)		ER	C3 (PIO T	ype)
	Servo press		PIO p	attern			PIO patte	rn
Port	-	0	1	2	3	0	1	2
OUT0	PCMP	PEND	PE0	PEND	PEND	PEND	PE0	PEND
OUT1	PRUN	HEND	PE1	HEND	HEND	HEND	PE1	HEND
OUT2	PORG	ZONE	PE2	ZONE	ZONE	ZONE 1	PE2	PZONE/ ZONE1
OUT3	APRC	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM
OUT4	SERC	0	0	0	0	0	0	0
OUT5	PRSS	0	0	0	0	0	0	0
OUT6	PSTP	0	0	0	0	0	0	0
OUT7	MPHM	0	0	0	0	0	0	0
OUT8	JDOK	0	0	0	0	0	0	0
OUT9	JDNG	0	0	0	0	0	0	0
OUT10	CEND	0	0	0	0	0	0	0
OUT11	RMDS	0	0	0	0	0	0	0
OUT12	HEND	0	0	0	0	0	0	0
OUT13	SV	0	0	0	0	0	0	0
OUT14	* ALM	0	0	0	0	0	0	0
OUT15	*ALML ^(Note)	0	0	0	0	0	0	0

5.3.12 Controller Status Signal Reading 1 (DSS1)

[1] Function

This bit reads the internal status of the controller.

For status details, refer to [4.3.2 [12] Data of device status register 1].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 05	Device status register 1
Number of registers [H]	2	00 01	Reading address 9005 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start		None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	02	2 bytes = Reading 1 register
Data [H]	2	Status 1	Status 1 [Hex]
Error check [H]	2	CRC (16 bits)	
End		None	Silent interval
Total number of bytes	7	-	

A sample query that reads the device status (Address 9005_H) of a controller with axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 03 90 05 00 01 B9 0B

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 05	Device status register 1
Number of registers [H]	00 01	1 register
Error check [H]	B9 0B	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 02 30 98 AD EE

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	30 98	Device status register 1
Error check [H]	AD EE	In accordance with CRC calculation
End	-	Silent interval

Contents of device status register 1:

 $3098_H \rightarrow Convert$ into binary number: 0011000010011000_b

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EMGS	SFTY	PWR	SV	PSFL	ALMH	ALML	ABER	BKRL	-	STP	HEND	PEND	CEND	CLBS	-
0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	0

5.3.13 Controller Status Signal Reading 2 (DSS2)

[1] Function

This bit reads the internal status of the controller.

For status details, refer to [4.3.2 [13] Data of device status register 2].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 06	Device status register 2
Number of registers [H]	2	00 01	Reading address 9006 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	02	2 bytes = Reading 1 register
Data [H]	2	Status 2	Status 2 [Hex]
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	7	-	

A sample query that reads the device status (Address 9006_{H}) of a controller with axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query)

<u>01 03 90 06 00 01 49 0B</u>

Field	RTU mode 8-bit data	Remarks				
Start	-	Silent interval				
Slave address [H]	01					
Function code [H]	03					
Start address [H]	90 06	Device status register 2				
Number of registers [H]	00 01	1 register				
Error check [H]	49 0B	In accordance with CRC calculation				
End	-	Silent interval				

The response to the query is as follows.

• Response (silent intervals are inserted before and after the response)

01 03 02 80 00 D9 84

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	80 00	Device status register 2
Error check [H]	D9 84	In accordance with CRC calculation
End	-	Silent interval

Contents of device status register 2:

 $8000_{H} \rightarrow$ Convert into binary number: 1000000000000_{b}

Bit15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ENBS	-	LOAD	TRQS	MODS	TEAC	JOG+	JOG-	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

5.3.14 Controller Status Signal Reading 3 (DSSE)

[1] Function

This bit reads internal status (expansion device) of the controller.

For status details, refer to [4.3.2 [14] Data of expansion device status register].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks		
Start	-	None	Silent interval		
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)		
Function code [H]	1	03	Register reading code		
Start address [H]	2	9007	Expansion device status register		
Number of registers [H]	2	0001	Reading address 9007 _H		
Error check [H]	2	CRC (16 bits)			
End	-	None	Silent interval		
Total number of bytes	8	-			

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks		
Start	-	None	Silent interval		
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)		
Function code [H]	1	03	Register reading code		
Number of data bytes [H]	1	02	2 bytes = Reading 1 register		
Data [H]	2	Expansion status	Expansion status [Hex]		
Error check [H]	2	CRC (16 bits)			
End	-	None	Silent interval		
Total number of bytes	7	-			

A sample query that reads the expansion device status (Address 9007_{H}) of a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query) 01 03 90 07 00 01 18 CB

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 07	Expansion device status register
Number of registers [H]	00 01	1 register
Error check [H]	18 CB	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 02 33 C2 2D 25

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	33 C2	Expansion device status register
Error check [H]	2D 25	In accordance with CRC calculation
End	-	Silent interval

Contents of expansion device status register 2:

 $33C2_H \rightarrow$ Convert into binary number: 0011001111000010_b

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EMGP	MPUV	RMDS	-	GHMS	PUSH	PSNS	PMSS	-	-	MOVE	-	-	-	-	-
0	0	1	1	0	0	1	1	1	1	0	0	0	0	1	0

5.3.15 Controller Status Signal Reading 4 (STAT)

[1] Function

This bit reads the internal operation status of the controller.

For status details, refer to [4.3.2 [15] Data of system status registers].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks		
Start	-	None	Silent interval		
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)		
Function code [H]	1	03	Register reading code		
Start address [H]	2	90 08	System status register		
Number of registers [H]	2	00 02	Reading addresses 9008_{H} to 9009_{H}		
Error check [H]	2	CRC (16 bits)			
End	-	None	Silent interval		
Total number of bytes	8	-			

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks		
Start	-	None	Silent interval		
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)		
Function code [H]	1	03	Register reading code		
Number of data bytes [H]	1	04	4 bytes = Reading 2 registers		
Data [H]	4	System status	System status [Hex]		
Error check [H]	2	CRC (16 bits)			
End	-	None	Silent interval		
Total number of bytes	9	-			

A sample query that reads the system status (Address 9008_{H} to 9009_{H}) of a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query)

01 03 90 08 00 02 68 C9

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 08	System status register
Number of registers [H]	00 02	2 registers
Error check [H]	68 C9	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

• Response (silent intervals are inserted before and after the response)

01 03 04 00 88 80 19 DA 13

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04	$04_H \rightarrow 4$ bytes = 2 registers
Data [H]	00 88 80 19	System status register
Error check [H]	DA 25	In accordance with CRC calculation
End	-	Silent interval

Contents of system status register:

	• · · · · · ·		
0088 8019 _H →	Convert into binary number:	0000000010001000	1000000000011001b

Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
BATL	-	-	-	-	-	-	-	-	-	-	-	-	-	ASOF	AEEP
0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	-	-	-	-	-	RMDS	HEND	SV	SON	MPOW
1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1

5.3.16 Current Speed Reading (VNOW)

[1] Function

The monitored data of actual motor speed is read. The speed may be positive or negative depending on the moving direction of the actuator.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 0A	Current speed monitor
Number of registers [H]	2	00 02	Reading addresses 900A _H to 900B _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	04	4 bytes = Reading 2 registers
Data [H]	4	Current speed	Current speed [Hex] The unit is 0.01 mm/s.
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	9	-	

A sample query that reads the current speed monitor (from address $900A_H$ to $900B_H$) of a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query)

01 03 90 0A 00 02 C9 09

Field	RTU mode 8-bit data	Remarks	
Start	-	Silent interval	
Slave address [H]	01		
Function code [H]	03		
Start address [H]	90 0A	Current speed monitor	
Number of registers [H]	00 02	2 registers	
Error check [H]	C9 09	In accordance with CRC calculation	
End	-	Silent interval	

The response to the query is as follows.

• Response (silent intervals are inserted before and after the response)

01 03 04 00 00 07 C8 F9 95

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04	$04_H \rightarrow 4$ bytes = 2 registers
Data [H]	00 00 07 C8	Current speed monitor
Error check [H]	F9 95	In accordance with CRC calculation
End	-	Silent interval

Example 1 The current speed is " $000007C8_{H}$ " \rightarrow Convert into decimal number \rightarrow 1992 (× 0.01mm/s) Therefore, the current speed monitor is 19.92mm/s

Example 2 When the current speed reading is "FFFF070_H" (moving in the direction opposite to the example above) FFFFFFF_H - FFFF070_H + 1 (make sure to add 1) = F90_H Convert into decimal number \rightarrow 3984 (× 0.01mm/s) Therefore, the current speed is 39.84mm/s

5.3.17 Current Ampere Reading (CNOW)

[1] Function

This bit reads the monitor data of the motor current (torque current command value). The unit is [mA].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 OC	Current ampere monitor
Number of registers [H]	2	00 02	Reading addresses $900C_H$ to $900D_H$
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	04	4 bytes = Reading 2 registers
Data [H]	4	Motor current monitor	Motor current monitor [Hex] The unit is [mA]
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	9	-	

A sample query that read the current ampere monitor (Address $900C_H$ to $900D_H$) of a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query)

01 03 90 0C 00 02 29 08

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 OC	Current ampere monitor
Number of registers [H]	00 02	2 registers
Error check [H]	C9 09	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

• Response (silent intervals are inserted before and after the response)

01 03 04 00 00 02 0D 3A 96

Field RTU mode 8-bit data		Remarks	
Start	-	Silent interval	
Slave address [H]	01		
Function code [H]	03		
Number of data bytes [H]	04	$04_H \rightarrow 4$ bytes = 2 registers	
Data [H]	00 00 02 0D	Motor current monitor	
Error check [H]	3A 96	In accordance with CRC calculation	
End	-	Silent interval	

The monitor value is "0000020D_H" \rightarrow Convert into decimal number \rightarrow 525

Therefore, the current ampere monitor value is 525mA.

5.3.18 Deviation Reading (DEVI)

[1] Function

This bit reads the deviation over a 1ms period between the position command value and the feedback value (actual position).

The unit is [pulse].

The number of pulses per one motor revolution in mechanical angle varies depending on the encoder used.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 0E	Deviation monitor
Number of registers [H]	2	00 02	Reading addresses 900E _H to 900F _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01н to 10н)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	04	4 bytes = Reading 2 registers
Data [H]	4	Deviation monitor	Deviation monitor [Hex] The unit is [pulse]
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	9	-	

A sample query that reads the deviation monitor (Address $900E_H$ to $900F_H$) of a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query)

01 03 90 0E 00 02 88 C8

Field	RTU mode 8-bit data	Remarks	
Start	-	Silent interval	
Slave address [H]	01		
Function code [H]	03		
Start address [H]	90 0E	Deviation monitor	
Number of registers [H]	00 02	2 registers	
Error check [H]	88 C8	In accordance with CRC calculation	
End	-	Silent interval	

The response to the query is as follows.

• Response (silent intervals are inserted before and after the response)

01 03 04 00 00 00 03 BA 32

Field RTU mode 8-bit data		Remarks	
Start	-	Silent interval	
Slave address [H]	01		
Function code [H]	03		
Number of data bytes [H]	04	$04_H \rightarrow 4$ bytes = 2 registers	
Data [H]	00 00 00 03	Deviation monitor	
Error check [H]	3A 96	In accordance with CRC calculation	
End	-	Silent interval	

The monitor value is "0000003_H" \rightarrow Convert into decimal number \rightarrow 3

Therefore, the deviation monitor value is 3 pulse

5.3.19 Total Time after Power On Reading (STIM)

[1] Function

This bit reads the total time since the controller power was turned on. The unit is [ms]. The timer value is not cleared by software reset.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 10	System timer
Number of registers [H]	2	00 02	Reading addresses 9010_{H} to 9011_{H}
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	04	4 bytes = Reading 2 registers
Data [H]	4	System timer	System timer [Hex] The unit is [ms]
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	9	-	

A sample query that reads the system timer value (Address 9010_{H} to 9011_{H}) of a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query) 01 03 90 10 00 02 E8 CE

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 10	System timer
Number of registers [H]	00 02	2 registers
Error check [H]	8E CE	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 04 00 F0 27 61 20 18

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04	$04_H \rightarrow 4$ bytes = 2 registers
Data [H]	00 F0 27 61	System timer
Error check [H]	20 18	In accordance with CRC calculation
End	-	Silent interval

The system timer is "00F02761H" \rightarrow Convert into decimal number \rightarrow 15738721ms

The total time since the controller power was turned on is 15738.721s.

5.3.20 Special Input Port Input Signal Status Reading (SIPM)

[1] Function

This bit reads the status of input ports other than the normal input port.

For status details, refer to [4.3.2 [16] Data of special input port monitor registers].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1 03		Register reading code
Start address [H]	2	90 12	Special input port monitor
Number of registers [H]	2	00 01	Reading addresses 9012 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	02	2 bytes = Reading 1 register
Data [H]	a [H] 2		Refer to the list in [4.3.2 [16]]
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	7	-	

A sample query that reads the special input port (Address 9012_H) of a controller of axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 03 90 12 00 01 09 0F

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 12	Special input port
Number of registers [H]	00 01	1 register
Error check [H]	09 0F	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 02 03 00 B8 B4

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	03 00	Special input port monitor
Error check [H]	B8 B4	In accordance with CRC calculation
End	_	Silent interval

Contents of special input port monitor:

$0300_H \rightarrow Convert into binary number: 0$	00000110000000b
--	-----------------

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	NP	-	PP	-	-	-	MDSW	-	-	-	BLCT	HMCK	OT	CREP	LS
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0

5.3.21 Zone Output Signal Status Reading (ZONS)

[1] Function

This bit reads the status of zone.

For status details, refer to [4.3.2 [17] Data of zone status registers].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 13	Zone status query
Number of registers [H]	2	00 01	Reading address 9013 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	n code [H] 1		Register reading code
Number of data bytes [H]	r of data bytes [H] 1		2 bytes = Reading 1 register
Data [H]	2	Zone status	Refer to [4.3.2 [17]]
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	7	-	

A sample query that reads the zone status register (Address 9013_{H}) of a controller of axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 03 90 13 00 01 58 CF

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 13	Zone status query
Number of registers [H]	00 01	1 register
Error check [H]	58 CF	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 02 00 03 F8 45

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	00 03	Zone status
Error check [H]	F8 45	In accordance with CRC calculation
End	-	Silent interval

Contents of zone status register:

 $0003_H \rightarrow Convert$ into binary number: 000000000000011_b

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	LS2	LS1	LS0	-	-	-	ZP	-	-	-	-	-	-	Z2	Z1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

5.3.22 Positioning Completed Position Number Reading (POSS) Exected Program Number Register (Servo Press Type) (POSS)

[1] Function

This bit reads the position complete number or exected program number. For status details, refer to [4.3.2 [18] Data of position number status register].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 14	Position number / Exected program number status
Number of registers [H]	2	00 01	Reading address 9014 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks		
Start	-	None	Silent interval		
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)		
Function code [H]	1	03	Register reading code		
Number of data bytes [H]	1	02	2 bytes = Reading 1 register		
Data [H]	2	Position number / Exected program number status	Refer to the list in [4.3.2 [18]]		
Error check [H]	2	CRC (16 bits)			
End	-	None	Silent interval		
Total number of bytes	7	-			

A sample query that reads the position complete (Address 9014_{H}) of a controller of axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 03 90 14 00 01 E9 0E

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 14	Position number / Exected program number status
Number of registers [H]	00 01	1 register
Error check [H]	E9 0F	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 02 00 03 B8 44

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	00 03	Completed position Number
Error check [H]	B8 44	In accordance with CRC calculation
End	-	Silent interval

Contents of Data of position number status register:

 $0003_H \rightarrow Convert$ into binary number: 000000000000011_b

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	PM512	PM256	PM128	PM64	PM32	PM16	PM8	PM4	PM2	PM1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

5.3.23 Controller Status Signal Reading 5 (SSSE)

[1] Function

This query reads the internal operation status of the controller.

For status details, refer to [4.3.2 [19] Data of expansion system status register].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 15	Expansion system status register
Number of registers [H]	2	00 01	Reading addresses 9015 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks		
Start	-	None	Silent interval		
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)		
Function code [H]	1	03	Register reading code		
Number of data bytes [H]	1	02	2 bytes = Reading 1 register		
Data [H]	2	Expansion system status	Refer to the list in [4.3.2 [19]]		
Error check [H]	2	CRC (16 bits)			
End	-	None	Silent interval		
Total number of bytes	7	-			

A sample query that reads the expansion system status register (Address 9015_{H}) of a controller of axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 03 90 15 00 01 B8 CE

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 15	Expansion system status register
Number of registers [H]	00 01	1 register
Error check [H]	B8 CE	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 02 01 00 B9 D4

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	01 00	Expansion system status
Error check [H]	B9 D4	In accordance with CRC calculation
End	_	Silent interval

Contents of expansion system status register:

 $0100_{H} \rightarrow Convert into binary number: 000000010000000_{b}$

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	ALMC	-	-	RTC	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

5.3.24 Current Load Reading...SCON-CA/CB, PCON-CBP only

[1] Function

The monitored data of load cell measurement (push force) is read. The unit is 0.01N.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 1E	Load monitor
Number of registers [H]	2	00 02	Reading address901E _H to 901F _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	04	4 bytes = Reading 2 registers
Data [H]	4	Load cell measurement	Current push force [N] Unit: 0.01N
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	9		

A sample query that reads the load cell current measurement (Address $901E_{H}$ to $901F_{H}$) on the load cell connected to controller axis 0.

Query (silent intervals are inserted before and after the query)
 01 03 90 0A 00 02 89 0D

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 1E	Load monitor
Number of registers [H]	00 02	2 registers
Error check [H]	89 0D	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 04 00 00 03 E4 FA 88

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04	$04_H \rightarrow 4$ bytes = 2 registers
Data [H]	00 00 03 E4	Current push force [N]
Error check [H]	B9 D4	In accordance with CRC calculation
End	-	Silent interval

Example 1) The current measurement on the load cell is

 $000003E4_{H} \rightarrow Convert \ into \ decimal \ number \rightarrow 996 \ (\times \ 0.01N) \ \rightarrow \ 9.96N$ The current push force is 9.96N

- Example 2) If the current measurement reading on the load cell is "FFFFF35_H" (tensile state ^(Note 1)), FFFFFFF_H - FFFFF35_H + 1 ^(*1) \rightarrow Convert into decimal number \rightarrow 203 (× 0.01N) \rightarrow 2.03 Therefore, the current tensile force ^(Note 1) is 2.03N.
- Note 1 The pulling operation is applicable only for the pulse pressing.
- *1 As it is a complement of 2, make sure to add "1".

Note If the response example is simply an example and will vary depending on various conditions.

5.3.25 Overload Level Monitor Reading (OLLV)...SCON-CA/CAL/CB Only

[1] Function

Current load level to the motor is read in ratio.

The unit is 1%.

For status details, refer to [4.3.2 [20] Overload level monitors].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 20	Overload level monitor
Number of registers [H]	2	00 02	Reading address 9020_H to 9021_H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	04	4 bytes = Reading 2 registers
Data [H]	4	Overload level	Unit: 1%
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	9	-	

A sample query that reads the overload level (Address 9020_{H} to 9021_{H}) on the actuator connected to controller axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 03 90 20 00 02 E8 C1

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 20	Load monitor
Number of registers [H]	00 02	2 registers
Error check [H]	E8 C1	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 04 00 00 04 67 BC1

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04	$04_H \rightarrow 4$ bytes = 2 registers
Data [H]	00 00 00 46	Current Overload Level [%]
Error check [H]	7B C1	In accordance with CRC calculation
End	-	Silent interval

Example 1) The current overload level is

 $0000046_{\text{H}} \rightarrow \text{Convert}$ into decimal number $\rightarrow 70$

The current overload level is 70%.

Note If the response example is simply an example and will vary depending on various conditions.

5.3.26 Press Program Alarm Code Reading (ALMP)...Servo Press Type Only

[1] Function

Codes to show the program condition or alarm status are read.

" 00_{H} " is output in the normal condition.

For alarm code details, refer to the [instruction manual of servo press type controller].

Also, for the register details, refer to [4.3.2 [21] Press program alarm codes].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 22	Press program alarm codes
Number of registers [H]	2	00 01	Reading address 9022 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01н to 10н)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	02	2 bytes = Reading 1 register
Data [H]	2	Alarm code	Alarm code [HEX]
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	7	-	

Here shows an example to read an alarm code (Address 9022_H) of a pressing program occurred in the controller on Axis No. 0.

 Query (silent intervals are inserted before and after the query) 01 03 90 22 00 01 09 00

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 22	Press program alarm codes
Number of registers [H]	00 01	1 register
Error check [H]	09 00	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 02 00 03 FB 45

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	00 03	Current generated alarm code
Error check [H]	FB 45	In accordance with CRC calculation
End	_	Silent interval

Current generated alarm code is 0003_H

 $0003_{\text{H}} \rightarrow$ It is the Press program alarm codes 03 "Pogram startup at axis operation".

Check in [Troubleshooting pages in Servo-Pressing Feature Instruction Manual (ME0345) for SCON-CB Controller] for the details of the pressing program alarm codes.

Note If the response example is simply an example and will vary depending on various conditions.

5.3.27 Alarm Generated Press Program No. Reading (ALMP)...Servo Press Type Only

[1] Function

The press program number that an alarm is issued is read.

 00_{H} is output in the normal condition.

For the register details, refer to [4.3.2 [22] Alarm generated press program No.].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	9023	Alarm generated program No.
Number of registers [H]	2	0001	Reading address 9023 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	02	2 bytes = Reading 1 register
Data [H]	2	Program No.	Alarm generated program No. [HEX]
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	7	-	

Here shows an example to read the pressing program number occurred in the pressing program alarm (Address 9023_{H}) in the controller on Axis No. 0.

 Query (silent intervals are inserted before and after the query) 01 03 90 23 00 01 58 C0

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 23	Alarm generated program No.
Number of registers [H]	00 01	1 register
Error check [H]	58 C0	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 02 00 05 78 47

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	00 05	Alarm generated program No.
Error check [H]	78 47	In accordance with CRC calculation
End	_	Silent interval

The pressing program number occurred in the pressing program alarm is $0005_{\text{H}} \rightarrow \text{No.}~5$

Note If the response example is simply an example and will vary depending on various conditions.

5.3.28 Press Program Status Register Reading (PPST)...Servo Press Type Only

[1] Function

Internal operation condition in the press program is read.

For the register details, refer to [4.3.2 [23] Press program status registers].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	90 24	Press program status register
Number of registers [H]	2	00 01	Reading address 9024 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1	02	2 bytes = Reading 1 register
Data [H]	2	Press program status register	Press program status [HEX]
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	7	-	

A sample query that reads the press program status (Address 9024_{H}) of a controller of axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 03 90 24 00 01 E9 01

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 24	Press program status register
Number of registers [H]	00 01	1 register
Error check [H]	E9 01	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 02 01 02 38 15

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	01 02	Press program status
Error check [H]	FB 45	In accordance with CRC calculation
End	-	Silent interval

Contents of press program status:

 $0102_H \rightarrow Convert$ into binary number: 000000100000010_b

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	WAIT	RTRN	DCMP	PSTP	PRSS	SERC	APRC	-	-	-	MPHM	PALM	PCMP	PRUN	PORG
0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0

Note If the response example is simply an example and will vary depending on various conditions.

5.3.29 Press Program Judgement Status Register Reading (PPJD)...Servo Press Type Only

[1] Function

Judgement condition in the press program is read.

For the register details, refer to [4.3.2 [24] Press program judgement status register].

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01н to 10н)
Function code [H]	1	03	Register reading code
Start address [H]	2 90 25		Press program judgement status register
Number of registers [H]	2	00 01	Reading address 9025 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks	
Start	-	None	Silent interval	
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)	
Function code [H]	1	03	Register reading code	
Number of data bytes [H]	1	02	2 bytes = Reading 1 register	
Data [H]	2	Press program judgement status	Press program judgement status [HEX]	
Error check [H]	2	CRC (16 bits)		
End	-	None	Silent interval	
Total number of bytes	7	-		

A sample query that reads the press program judgement status (Address 9025_H) of a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query) 01 03 90 25 00 01 B8 C1

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Start address [H]	90 25	Press program judgement status register
Number of registers [H]	00 01	1 register
Error check [H]	B8 C1	In accordance with CRC calculation
End	-	Silent interval

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 02 01 05 79 D7

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02	$02_H \rightarrow 2$ bytes = 1 register
Data [H]	01 05	Press program judgement status
Error check [H]	79 D7	In accordance with CRC calculation
End	-	Silent interval

Contents of press program judgement status:

 $0105_{H} \rightarrow \text{Convert into binary number: } 0000000100000101_{b}$

	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ĺ	-	-	-	-	-	-	-	-	-	-	LJNG	LJOK	PJNG	PJOK	JDNG	JDOK
ĺ	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0

Note If the response example is simply an example and will vary depending on various conditions.

5.4 Operation Commands and Data Rewrite (Function code 05)

5.4.1 Writing to Coil

[1] Function

Change (write) the status of DO (Discrete Output) of a slave to either ON or OFF. In case of broadcast transmission, the coils at the specified address of all slaves are rewritten.

[2] Start address list

Address [H]	Symbol	Function	
0401	SFTY	Safety speed command	
0403	SON	Servo ON command	
0407	ALRS	Alarm reset command	
0408	BKRL	Brake forced-release command	
040A	STP	Pause command	
040B	HOME	Home return command	
040C	CSTR	Positioning start command	
0411	JISL	Jog/inch switching	
0414	MOD	Teaching mode command	
0415	TEAC	Position data load command	
0416	JOG+	Jog+ command	
0417	JOG-	Jog- command	
0418	ST7	Start position 7 (solenoid valve mode)	
0419	ST6	Start position 6 (solenoid valve mode)	
041A	ST5	Start position 5 (solenoid valve mode)	
041B	ST4	Start position 4 (solenoid valve mode)	
041C	ST3	Start position 3 (solenoid valve mode)	
041D	ST2	Start position 2 (solenoid valve mode)	
041E	ST1	Start position 1 (solenoid valve mode)	
041F	ST0	Start position 0 (solenoid valve mode)	
0426	CLBR	Load cell calibration command	
0427	PMSL	PIO/Modbus switching specification	
042C	STOP	Deceleration stop	
049B	ENMV	Axis operation permission	
049C	PHOM	Program home return movement	
049D	SSTP	Search stop	
049E	FPST	Program compulsoly finish	
049F	PSTR	Program start	

5.4.2 Safety Speed Enable/Disable Switching (SFTY)

[1] Function

This query "enables/disables" the speed specified by user parameter No. 35, "Safety speed." Enabling the safety speed in the MANU mode will limit the speeds of all movement commands.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$) 00 $_{\rm H}$ when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 01	Safety speed command
Changed data [H]	2	Arbitrary	Safety speed enabled: FF00 _H Safety speed disabled: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

(1) A sample query that "enables" the safety speed of a controller of axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) Safety speed enabled: <u>01 05 04 01 FF 00 DC CA</u>

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 01	Safety speed command
Changed data [H]	FF 00	Safety speed enabled: FF00 _H
Error check [H]	B8 CE	In accordance with CRC calculation
End	-	Silent interval

(2) A sample query that "disables" the safety speed of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 Safety speed disabled: <u>01 05 04 01 00 00 9D 3A</u>

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 01	Safety speed command
Changed data [H]	00 00	Safety speed disabled: 0000 _H
Error check [H]	9D 3A	In accordance with CRC calculation
End	-	Silent interval

If the change is successful, the response message will be the same as the query.

5.4.3 Servo ON/OFF (SON)

[1] Function

Control ON/OFF of the servo.

When "Servo ON" is specified by the new data, the servo will turn ON after elapse of the manufacturer parameter "Servo ON delay time"^(*1). However, the following conditions must be satisfied:

[Condition]

- The EMG status bit (bit 15) in device status register 1 (9005_H) is "0".
- The major failure status bit (bit 10) in device status register 1 (9005_H) is "0".
- The enable status bit (bit 15) in device status register 2 (9006_H) is "1".
- The auto servo OFF status bit (bit 17) in the system status register (9008_H to 9009_H) is "0".

*1 "Servo-On Latency" is a parameter for the manufacturer's adjustment.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10_H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 03	Servo ON/OFF command
Changed data [H]	2	Arbitrary	Servo ON: FF00 _H Servo OFF: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

* If a teaching tool is taken off after the servo is turned off on the teaching tool before having a communication with the host, servo-on/off with communication to the host will not be available.
 In order to recover the condition, either the power on the controller should be rebooted or the connection to SIO Port is to be disconnected while the servo is turned on.

[3] Response format

(1) A sample query that turns on the "servo ON" of a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query)

01 05 04 03 FF 00 7D 0A

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 03	Servo ON/OFF command
Changed data [H]	FF 00	Servo ON
Error check [H]	7D 0A	In accordance with CRC calculation
End	-	Silent interval

(2) A sample query that turns on the "servo OFF" of a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query)

01 05 04 03 00 00 3C FA

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 03	Servo ON/OFF command
Changed data [H]	00 00	Servo OFF
Error check [H]	3C FA	In accordance with CRC calculation
End	-	Silent interval

If the change is successful, the response message will be the same as the query.

5.4.4 Alarm Reset (ALRS)

[1] Function

When the alarm reset edge is turned on (the data is first set to $FF00_H$ and then changed to 0000_H), alarms will be reset.

If any alarm cause has not been removed, the same alarm will be generated again. If the alarm reset edge is turned on while the actuator is paused, the remaining travel will be cancelled. When alarms are reset, make sure to write changed data of $0000_{\rm H}$ to restore the normal status.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 07	Alarm reset command
Changed data [H]	2	Arbitrary	Alarm reset command ON: FF00 _H Alarm reset command OFF: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A sample query that resets the alarms of a controller of axis No. 0 is shown below.

- Query (silent intervals are inserted before and after the query)
 - First time: 01 05 04 07 FF 00 3C CB (Execute alarm reset)

Second time: 01 05 04 07 00 00 7D 3B (Restore normal status)

Field RTU mode 8-bit data		Remarks	
Start	-	Silent interval	
Slave address [H]	01	Axis No.1	
Function code [H] 05			
Start address [H] 04 07		Alarm reset command	
Changed data [H] First time: FF 00 Swcond time: 00 00		Write 0000_{H} after resetting alarms to restore the normal status.	
Error check [H] First time: 3C CB Swcond time: 7D 3B		In accordance with CRC calculation	
End	-	Silent interval	

If the change is successful, the response message will be the same as the query.

5.4.5 Brake Forced Release (BKRL)

[1] Function

Brake control is linked to servo ON/OFF. The brake can be forcefully released even when the servo is ON.

Caution

Once it gets unnecessary for brake compulsory release, make sure to have 0000_H written with the changed data and set it back to the normal condition. The brake would not work while the servo is off if the brake compulsory release is kept on. If it is a condition that the unit is installed vertically, a workpiece would drop and may cause a risk of injury or workpiece being damaged.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0408	Break forced release command
Changed data [H]	2	Arbitrary	Break forced release ON: FF00 _H Break forced release OFF: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A sample query that brake forced release of a controller of axis No. 0 is shown below.

• Query (silent intervals are inserted before and after the query)

 First time:
 01 05 04 08 FF 00 0C C8 (Execute break forced release)

 Second time:
 01 05 04 08 00 00 4D 38 (Restore normal status)

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 08	Break forced release command
Changed data [H]	FF 00	First time: FF00 Second time: 0000 (After the brake compulsory release, write 0000_{H} and set it back to the normal condition.)
Error check [H]	0C C8	First time: 0CC8 (In accordance with CRC calculation) Second time: 4D38 (In accordance with CRC calculation)
End	-	Silent interval

If the change is successful, the response message will be the same as the query.

5.4.6 Pause (STP)

[1] Function

If the pause command is transmitted during movement, the actuator decelerates and stops. If the status is set back to normal again, the actuator resumes moving for the remaining distance. As long as the pause command is being transmitted, all motor movement is inhibited. If the alarm reset command bit is set while the actuator is paused, the remaining travel will be cancelled.

If this bit is set during home return, the movement command will be held if the actuator has not yet reversed after contacting the mechanical end. If the actuator has already reversed after contacting the mechanical end, home return will be repeated from the beginning.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	040A	Pause command
Changed data [H]	2	Arbitrary	Pause command ON: FF00 _H Pause command OFF: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[2] Query format

[3] Response format

A sample query that pauses a controller of axis No. 0 is shown below.

- Query (silent intervals are inserted before and after the query)
 - 01 05 04 0A FF 00 AD 08 (Pause command)

01 05 04 0A 00 00 EC F8 (Pause release)

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 0A	Pause command
Changed data [H]	FF 00	Pause command ON
Error check [H]	AD 08	In accordance with CRC calculation
End	-	Silent interval

If the change is successful, the response message will be the same as the query.

5.4.7 Home Return (HOME)

[1] Function

Home return operation will start if a rising edge in the home return command signal is detected (the data is first set to 0000_{H} and then changed to FF00_H). Upon home return completion, the HEND bit will become "1". This command can be input as many times as desired even after home return completion.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10_H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	040B	Home return command
Changed data [H]	2	Arbitrary	Home return command ON: FF00 _H Home return command OFF: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

* The servo must be ON before a home return command is issued.

If a teaching pendant is connected before the control establishes communication with the host, the servo is turned OFF, and then the teaching pendant is removed, the servo cannot be turned ON/OFF via commands received from omit the host.

In this case, restore the RC controller power, or make sure the SIO port connection is removed while the servo is ON.

[3] Response format

A query example that executes home return operation of a controller of axis No. 0 is shown here.

• Query (silent intervals are inserted before and after the query)

 First time:
 01 05 04 0B 00 00 BD 38 (Set normal status)

 Second time:
 01 05 04 0B FF 00 FC C8 (Execute home return)

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 0A	Home return
Changed data [H]	First time: 00 00 Second time: FF 00	First time: 0000 Second time: FF00 * Send data twice to set the rising edge.
Error check [H]	First time: BD 38 Second time: FC C8	In accordance with CRC calculation
End	-	Silent interval

If the change is successful, the response message will be the same as the query.

5.4.8 Positioning Start Command (CSTR)

[1] Function

If the rising edge of the positioning start command is detected (the data is first set to 0000_{H} and then changed to FF00_H), the actuator will move to the position specified by the position number stored in the position number command register (POSR:0D03_H). If nothing is done after the position start command (FF00_H is read and no new data is written), a position complete will not be output even when the actuator enters the positioning band. Have 0000_{H} written with the changed data, and turn the home-return command "off".

If this command is executed when home return has never been performed after the power was turned on (when the HEND bit is "0"), the actuator will perform home return and then start moving to the target position.

* The target position, speed and all other operation parameters must be set in the position table (nonvolatile memory) of the controller in advance.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	040C	Positioning start command
Changed data [H]	2	Arbitrary	Positioning start command ON: FF00 _H Positioning start command OFF: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[2] Query format

[3] Response format

A sample query that moves the actuator of a controller of axis No. 0 to the position specified by the position number stored in the position number command register (POSR: $0D03_{H}$) is shown below.

• Query (silent intervals are inserted before and after the query)

First time:01 05 04 0C FF 00 4D 09(Move to the specified position)Second time:01 05 04 0C 00 00 0C F9(Positioning start command OFF)

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 0C	Positioning start command
Changed data [H]	First tim: FF 00 Second time: 00 00	First time: FF00 Second time: 0000 * Once actuator operation has started, turn the position start command "off".
Error check [H]	First time: 40 09 Second time: 0CF9	In accordance with CRC calculation
End	-	Silent interval

If the change is successful, the response message will be the same as the query.

5.4.9 Jog/Inch Switching (JISL)

[1] Function

This bit switches between jogging and inching. When the changed data is 0000_{H} , the jog operation should be performed by operating JOG+ (Start address: 0416_{H}) / JOG- (Start address: 0417_{H}). When it is FF00_H, the inching operation should be performed by operating JOG+ (Start address: 0416_{H}) / JOG- (Start address: 0417_{H}).

If this bit switches while the actuator is jogging, the actuator will decelerate to a stop. If this bit switches while the actuator is inching, the inching movement will continue.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0411	Jog/Inch Switching
Changed data [H]	2	Arbitrary	Inching operation: FF00 _H Jogging operation: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

- [4] Query sample
- (1) A sample query that switches the operation of a controller of axis No. 0 to inching is shown below.
 - Query (silent intervals are inserted before and after the query) 01 05 04 11 FF 00 DD 0F

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 11	Jog/Inch Switching
Changed data [H]	FF 00	Switch the inching operation
Error check [H]	9C FF	In accordance with CRC calculation
End	-	Silent interval

- $(2)\,A$ sample query that switches the operation of a controller of axis No. 0 to jog is shown below.
 - Query (silent intervals are inserted before and after the query)

01 05 04 11 00 00 9C FF

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 11	Jog/Inch Switching
Changed data [H]	00 00	Switch the Jog operation
Error check [H]	DD 0F	In accordance with CRC calculation
End	-	Silent interval

If the change is successful, the response message will be the same as the query.

5.4.10 Teaching Mode Command (MOD)

[1] Function

This bit switches between the positioning mode and teaching mode.

It should be transmitted to the teaching mode once the changed data get into $FF00_H$ and should be transmitted to the positioning mode if into 0000_H . However, it has to be under the following conditions.

[Condition]

- The CSTR bit (bit 3) in details of device controller register 1 (0D00_H) is "0".
- The CSTR bit (bit 10) in details of device controller register 2 (0D01_H) is "0".
- JOG+/JOG- bits (bit 8, 9) in details of device controller register 2 (0D01_H) are both "0".
- ST# bits (bit 0 to 7) in details of device controller register 2 (0D01_H) are all "0".
- Actuators are stopped (even Push operation is not being conducted)

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01_H to 10_H) 00_H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 14	Switch between the positioning mode and the teaching mode.
Changed data [H]	2	Arbitrary	Teaching mode: FF00 _H Positioning mode: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

- (1) A sample query that switches the operation mode of a controller of axis No. 0 to teaching mode is shown below.
 - Query (silent intervals are inserted before and after the query)

01 05 04 14 FF 00 CD 0E

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 14	Switch between the positioning mode and the teaching mode.
Changed data [H]	FF 00	Switch the teaching mode
Error check [H]	CD 0E	In accordance with CRC calculation
End	-	Silent interval

- (2) A sample query that switches the operation mode of a controller of axis No. 0 to positioning mode is shown below.
 - Query (silent intervals are inserted before and after the query)

01 05 04 14 00 00 8C FE

Field	RTU mode 8-bit data	Remarks	
Start	-	Silent interval	
Slave address [H]	01		
Function code [H]	05		
Start address [H]	04 14	Switch between the positioning mode and the teaching mode.	
Changed data [H]	00 00	Switch the positioning mode	
Error check [H]	8C FE	In accordance with CRC calculation	
End	-	Silent interval	

If the change is successful, the response message will be the same as the query.

5.4.11 Position Data Load Command (TEAC)

[1] Function

The current position is acquired by writing this command (write $FF00_H$) when the teaching mode command (refer to [5.4.10]) is $FF00_H$ (teaching command).

The current position data will be written in the position number specified by the position number command register (Start address: 9800_{H}) when the aforementioned condition was detected. If other position data fields are empty, the default parameter values will be written at the same time in the empty fields other than the target position (positioning band INP, speed VCMD, acceleration/deceleration speed ACMD, and control flag CTLF).

After sending this command (write FF00_H), keep the status as is for 20ms or longer.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 15	Position data load command
Changed data [H]	2	Arbitrary	Position data load command ON: FF00 _H OFF: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

A sample query that acquires the current position when a controller of axis No. 0 is in the teaching mode is shown below.

• Query (silent intervals are inserted before and after the query)

01 05 04 15 FF 00 9C CE

Field	RTU mode 8-bit data	Remarks	
Start	-	Silent interval	
Slave address [H]	01		
Function code [H]	05		
Start address [H]	04 15	Position data load command	
Changed data [H]	FF 00	Position data load ON	
Error check [H]	9C CE	In accordance with CRC calculation	
End	-	Silent interval	

If the change is successful, the response message will be the same as the query.

Caution

• Alarm Code: 093 "Home-Return Incomplete PWRT Signal Detected" should be generated when this command (FF00_H Writing) is detected continuously for 20ms or more while in the status of the home-return incomplete.

5.4.12 Jog+ Command (JOG+)

[1] Function

The actuator performs either jog or inching operation.

- If the jog+ command (changed data FF00_H) is sent when the jog/inch switching command (refer to [5.4.9]) is set to 0000_H (set to jog), the actuator will jog in the direction opposite home. The speed and acceleration/deceleration speed conform to the "PIO jog speed" set by user parameter No. 26 and rated acceleration/deceleration speed, respectively. If the jog+ command (changed data 0000_H) is sent or the jog- command (refer to [5.4.13], changed data FF00_H) is sent while the actuator is moving jog, the actuator will decelerate to a stop.
- If the jog+ command rising edge is set (the data is first set to 0000_H and changed to FF00_H) while the jog/inch switching command (refer to [5.4.9]) is FF00_H (set to inching), the actuator will inch in the direction opposite home. The speed, travel and acceleration/deceleration speed conform to user parameter No. 26 "PIO jogging speed", user parameter No. 48 "PIO inching distance", and rated acceleration/deceleration speed, respectively.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01_H to 10_H) 00_H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 16	Jog+ command
Changed data [H]	2	Arbitrary	Jog+ command: FF00 _H Command OFF: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

(1) Axis No. 0 should be operated in jog in the positive direction (opposite home position).

• Query (silent intervals are inserted before and after the query)

01 05 04 16 FF 00 6C CE

Field	RTU mode 8-bit data	Remarks	
Start	-	Silent interval	
Slave address [H]	01		
Function code [H]	05		
Start address [H]	04 16	Jog+ command	
Changed data [H]	FF 00	Jog+ command ON	
Error check [H]	6C CE	In accordance with CRC calculation	
End	-	Silent interval	

(2) Axis No. 0 should be operated in inching in the positive direction (opposite home position).

• Query (silent intervals are inserted before and after the query)

First time: <u>01 05 04 16 FF 00 6C CE</u> (Perform inching movement) Second time: <u>01 05 04 16 00 00 2D 3E</u> (Command OFF)

Field	RTU mode 8-bit data	Remarks	
Start	-	Silent interval	
Slave address [H]	01		
Function code [H]	05		
Start address [H]	04 16	Jog+ command	
Changed data [H]	FF 00	Jog+ command ON	
Error check [H]	First time: 6C CE Second time: 2D 3E	In accordance with CRC calculation	
End	-	Silent interval	

If the change is successful, the response message will be the same as the query.

5.4.13 Jog- Command (JOG-)

[1] Function

The actuator performs either jog or inching operation.

- If the jog- command (changed data FF00_H) is sent when the jog/inch switching command (refer to [5.4.9]) is set to 0000_H (set to jog), the actuator will jog in the direction of home. The speed and acceleration/deceleration speed conform to the "PIO jog speed" set by user parameter No. 26 and rated acceleration/deceleration speed, respectively. If the jog- command (changed data 0000_H) is sent or the jog+ command (refer to [5.4.12], changed data FF00_H) is sent while the actuator is moving, the actuator will decelerate to a stop.
- If the jog- command rising edge is set (the data is first set to 0000_H and changed to FF00_H) while the jog/inch switching command (refer to [5.4.9]) is FF00_H (set to inching), the actuator will inch in the direction opposite home. The speed, travel and acceleration/deceleration speed conform to user parameter No. 26 "PIO jogging speed", user parameter No. 48 "PIO inching distance", and rated acceleration/deceleration speed, respectively.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10_H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 17	Jog- command
Changed data [H]	2	Arbitrary	Jog- command: FF00 _H Command OFF: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

(1) Axis No. 0 should be operated in jog in the positive direction (opposite home position).

• Query (silent intervals are inserted before and after the query)

01 05 04 17 FF 00 3D 0E

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 17	Jog- command
Changed data [H]	FF 00	Jog- command ON
Error check [H]	3D 0E	In accordance with CRC calculation
End	-	Silent interval

(2) Axis No. 0 should be operated in inching in the positive direction (opposite home position).

• Query (silent intervals are inserted before and after the query)

First time: <u>01 05 04 17 FF 00 3D 0E</u> (Perform inching movement) Second time: <u>01 05 04 17 00 00 7C FE</u> (Command OFF)

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 17	Jog- command
Changed data [H]	FF 00	Jog- command ON
Error check [H]	First time: 3D 0E Second time: 7C FE	In accordance with CRC calculation
End	-	Silent interval

5.4.14 Start Positions 0 to 7 (ST0 to ST7) Movement Command (Limited to solenoid valve mode)

[1] Function

The actuator moves to the specified position number position.

The movement command for start position 0 to 7 is effective only when solenoid valve mode is selected.

The movement command is sent by enabling either one of ST0 to ST7 in [5.4.14 [5] Start address] (write new value $FF00_H$ when 0000_H is set).

If a position other than the valid start positions is selected, Alarm code: 085 "Moving position number error" will be generated.

Either level operation or edge operation can be selected using user parameter No. 27, "Movement command type."

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10_H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0418 to 041F	Refer to [5.4.14 [5] Start address]
Changed data [H]	2	Arbitrary	*1 Operation command ON:FF00 _H Operation command OFF:0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

*1 If user parameter No. 27, "Movement command type" is set to "level operation," the actuator decelerates to a stop by overwriting FF00_H with 0000_H.

[3] Response format

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

A sample query that moves a controller of axis No. 0 to start position 2 is shown below. An example of start position setting.

No.	Position [mm]	Speed [mm/s]	Acceleration [G]	Deceleration [G]
0	0.00	533.00	0.30	0.30
1	25.00	533.00	0.30	0.30
2	50.00	533.00	0.30	0.30

• Query (silent intervals are inserted before and after the query)

First time: $01\ 05\ 04\ 1D\ 00\ 00\ 5C\ FC$ (Write 0000_H to set the edge) Second time: $01\ 05\ 04\ 1D\ FF\ 00\ 1D\ 0C$ (Movement command)

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 1D	Specified start position
Changed data [H]	First time: 00 00 Second time: FF 00	The movement command is capable to write in FF00 _H in the condition of 0000_{H} .
Error check [H]	First time: 5C FC Second time: 1D 0C	In accordance with CRC calculation
End	-	Silent interval

If the change is successful, the response message will be the same as the query.

[5] Start address

Address	Symbol	Name	Function
0418	ST7	Start Position 7	Move to position 7
0419	ST6	Start Position 6	Move to position 6
041A	ST5	Start Position 5	Move to position 5
041B	ST4	Start Position 4	Move to position 4
041C	ST3	Start Position 3	Move to position 3
041D	ST2	Start Position 2	Move to position 2
041E	ST1	Start Position 1	Move to position 1
041F	ST0	Start Position 0	Move to position 0

5.4.15 Load Cell Calibration Command (CLBR)

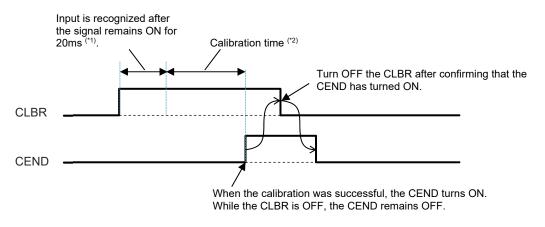
[1] Function (SCON-CA/CB Servo press connection type only)

The dedicated load cell is calibrated.

The factory setting of your load cell is that the ON status corresponds to a no-load state. If you want to define the reference state as a condition where a work part (load) is installed, calibrate the load cell.

Also calibrate the load cell in other situations as necessary (readjustment, inspection, etc.).

[2] Query format


Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 26	Load cell calibration command
Changed data [H]	2	Arbitrary	Calibration command: FF00 _H Normal operation: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response format

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

- [4] Calibration procedure
 - Stop the actuator operation. (The load cell cannot be calibrated while the actuator is performing any axis operation or push-motion operation or being paused, in which case 0E1: load cell calibration error alarm generates.)
 - 2) Turn this signal ON and keep it ON for at least 20ms.
 - 3) When the calibration is complete, the calibration complete signal (CEND of device status register 1 explained in 4.3.2 (12)) turns ON. After confirming that the CEND has turned ON, turn OFF the CLBR.

If the calibration is not completed in the normal condition, Alarm Code: 0E1 "Loadcell Calibration Error" should occur.

- *1 If the CLBR is turned OFF during this period, calibration will not be performed because the signal is not yet recognized as having been input.
- *2 If the CLBR is turned OFF during this period, an alarm will generate.

Caution

• Normal operation commands are not accepted while the CLBR is ON. Turn the command off after the calibration is completed.

Calibrate the dedicated load cell connected to controller axis 0.

Query (silent intervals are inserted before and after the query)
 First time: <u>01 05 04 26 FF 00 6C C1</u>
 Second time: <u>01 05 04 26 00 00 2D 31</u>

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 26	Load cell calibration command
Changed data [H]	First time: FF 00 Second time: 00 00	Load cell calibration command ON: FF00 Load cell calibration command OFF: 0000
Error check [H]	First time: 6C C1 Second time: 2D 31	In accordance with CRC calculation
End	-	Silent interval

5.4.16 PIO/Modbus Switching Setting (PMSL)

[1] Function

PIO external command signals can be enabled or disabled.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10_H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 27	PIO/Modbus switching setting
Changed data [H]	2	Arbitrary	*1 Enable Modus commands: FF00 _H Disable Modbus commands:0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

 *1 • Enable Modbus commands (ON) (disable PIO command): FF00_H (Operation via PIO signals is not possible).

 Disable Modbus commands (OFF) (enable PIO command): 0000_H (Operation via external PIO signals is possible).

Complement

If the Modbus command is enabled, the PIO status at change is maintained.
 If the Modbus command is switched to disabled, the operation status changes according to the current PIO status. Note that even if the status of signals that operate via edge detection has been changed, edge detection is ignored.

[3] Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

A sample query that enables the Modbus command of the operation of a controller of axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 05 04 27 FF 00 3D 01

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 27	PIO/Modbus switching setting
Changed data [H]	FF 00	Enable Modus commands
Error check [H]	3D 01	In accordance with CRC calculation
End	-	Silent interval

If the change is successful, the response message will be the same as the query.

Caution

- In the models equipped with operation model setting switch, it should be set to "PIO Command Valid" when it is set to AUTO mode, and "PIO Command Invalid" when set to MANU mode.
- On a non-PIO model, the default setting is "Disable PIO commands."
- If IAI's tool (teaching pendant or PC software) is connected, "Teaching modes 1, 2" and "Monitor modes 1, 2" are available as tool modes. The correspondence between these modes and PIO enable/disable specifications are as follows:
 - "Monitor modes 1, 2" \rightarrow "Enable PIO commands"
 - "Teaching modes 1, 2" \rightarrow "Disable PIO commands"

5.4.17 Deceleration Stop (STOP)

[1] Function

The actuator will start decelerating to a stop when the deceleration stop command edge (write $FF00_{H}$) is turned on.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$) 00 $_{\rm H}$ when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 2C	Deceleration stop setting
Changed data [H]	2	Arbitrary	Deceleration stop command: FF00 _H * The controller automatically resets the value to 0000 _H .
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	_	

[3] Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

A sample query that decelerates to a stop of a controller of axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 05 04 2C FF 00 4C C3

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 2C	Deceleration stop setting
Changed data [H]	FF 00	Deceleration stop command ON
Error check [H]	4C C3	In accordance with CRC calculation
End	-	Silent interval

5.4.18 Axis operation permission (ENMV) (Servo Press Type Only)

[1] Function

The setting can be switched on permission activated/inactivated.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10_H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 9B	Axis operation permission setting
Changed data [H]	2	Arbitrary	Axis operation permission activated: $FF00_H$ Axis operation permission inactivated: 0000_H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

Movement of the actuator connected to Axis No. 0 gets activated.

• Query (silent intervals are inserted before and after the query)

01 05 04 9B FF 00 FC E5

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 9B	Axis operation permission setting
Changed data [H]	FF 00	Axis operation permission ON
Error check [H]	FC E5	In accordance with CRC calculation
End	-	Silent interval

5.4.19 Program Home Position Movement (PHOM) (Servo Press Type Only)

[1] Function

Raise the program home-return edge (write $FF00_H$ under the condition of change data being 0000_H), and the movement will be made to the program home position set in each press program.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 9C	Program home position movement setting
Changed data [H]	2	Arbitrary	Program home position movement execution ON: $FF00_H$ Program home position movement execution OFF: 0000_H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

Movement of the actuator connected to Axis No. 0 gets activated.

Query (silent intervals are inserted before and after the query)
 First time: <u>01 05 04 9C 00 00 0C D4</u> (Write the 0000_H twice to raise the edge)
 Second time: <u>01 05 04 9C FF 00 4D 24</u> (Home position movement)

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 9C	Program home position movement setting
Changed data [H]	First time: 00 00 Second time: FF 00	First time: 0000_H Second time: FF00 _H (Send the data twice to raise the edge)
Error check [H]	First time: 0C D4 Second time: 4D 24	In accordance with CRC calculation
End	-	Silent interval

5.4.20 Search Stop (SSTP) (Servo Press Type Only)

[1] Function

Setting can be switched whether to finish the press program or not after search operation is completed.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 9D	Search operation stop setting
Changed data [H]	2	Arbitrary	Stopped after search operation: FF00 _H Not stopped after search operation: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

After search of the actuator connected to Axis No. 0, press program will be stopped.

• Query (silent intervals are inserted before and after the query) 01 05 04 9D FF 00 1C E4

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 9D	Search operation stop setting
Changed data [H]	FF 00	Stop pressing program after searching operation
Error check [H]	1C E4	In accordance with CRC calculation
End	-	Silent interval

5.4.21 Program Compulsoly Finish (FPST) (Servo Press Type Only)

[1] Function

Raise the press program compulsory complete edge (write $FF00_H$ under the condition of change data being 0000_H), and the press program will be compulsorily finished. While the change data retains $FF00_H$, the start command of the press program cannot be received.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 9E	Program compulsoly finish setting
Changed data [H]	2	Arbitrary	Program compulsoly finish ON: $FF00_H$ Program compulsoly finish OFF: 0000_H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

Press program of the actuator connected to Axis No. 0 will be compulsorily finished.

Query (silent intervals are inserted before and after the query)
 First time: <u>01 05 04 9E 00 00 AD 14</u> (Write the 0000_H twice to raise the edge)
 Second time: <u>01 05 04 9E FF 00 EC E4</u> (Compulsoly finish)

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 9E	Program compulsoly finish
Changed data [H]	First time: 00 00 Second time: FF 00	Send the data twice to raise the edge.
Error check [H]	First time: AD 14 Second time: EC E4	In accordance with CRC calculation
End	-	Silent interval

5.4.22 Program Start (PSTR) (Servo Press Type Only)

[1] Function

Raise the program start edge (write $FF00_H$ under the condition of change data being 0000_H), and the press program in the program number set in POSR Register will be executed.

[2] Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	04 9F	Press program Start setting
Changed data [H]	2	Arbitrary	Press program Start ON: FF00 _H Press program Start OFF: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[3] Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

Press program of the actuator connected to Axis No. 0 will be exected.

Query (silent intervals are inserted before and after the query)
 First time: <u>01 05 04 9F 00 00 FC D4</u> (Write the 0000_H twice to raise the edge)
 Second time: <u>01 05 04 9F FF 00 BD 24</u> (Press program exected)

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	
Function code [H]	05	
Start address [H]	04 9F	Press program Start setting
Changed data [H]	First time: 00 00 Second time: FF 00	First time: 0000 _H Second time: FF00 _H (Send the data twice to raise the edge)
Error check [H]	First time: FC D4 Second time: BD 24	In accordance with CRC calculation
End	-	Silent interval

5.5 Direct Writing of Control Information (Function code 06)

5.5.1 Writing to Registers

[1] Function

These queries change (write) data in registers of a slave.

In case of broadcast, data of registers of the same address of all slaves is changed. For the details of each register, refer to

- [4.3.2 [5] Details of device controller register 1]
- [4.3.2 [6] Details of device controller register 2]
- [4.3.2 [7] details of the position number command register and position movement specification register and program number command register (Servo Press) type]

[2] Start address list

Address	Symbol	Name	Byte
0D00	DRG1	Device control register 1	2
0D01	DRG2	Device control register 2	2
0D03	POSR	Position number command register/ Program number command register	2
9800	POSR	Position movement command register	2

The registers above are control command registers. The bits of these registers are assigned to input ports by PIO patterns when "PIO/Modbus Switch Status (PMSS) (refer to [4.3.2 [14])" is set to disable Modbus commands (enable PIO commands). These registers can be rewritten when the Modbus commands are enabled (PIO commands are disabled).

[3] Query format

Specify the address and data of the register whose data is to be changed in the query message. Data to be changed shall be specified as 16-bit data in the changed data area of the query.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10_H) 00 _H when broadcast is specified
Function code [H]	1	06	Write to a single coil DO.
Start address [H]	2	Arbitrary	Refer to [5.5.1 [2] Start address list]
Changed data [H]	2	Arbitrary	Refer to List of changed data [4.3.2 [5]] to [4.3.2 [7]]
Error check [H]	2	CRC (16 bits)	
End	-	None	Silent interval
Total number of bytes	8	-	

[4] Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

Examples of different operations are shown in (1) to (3) below.

- (1) A sample query that turns the servo ON a controller of axis No. 0 on and then executes home return operation is performed.
 - Query (silent intervals are inserted before and after the query)
 - First time: 01 06 0D 00 10 00 86 A6 (Servo ON)
 - Second time: 01 06 0D 00 10 10 87 6A (Home return + Servo maintains on)

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	Axis No.0 + 1
Function code [H]	06	
Start address [H]	0D 00	Device control register 1
Changed data [H]	First time: 10 00 Second time: 10 10	First time: Device control register 1 (SON) is ON Second time: Device control register 1 (SON+HOME) is ON (Keep the servo ON bit "1" in cases other than when the servo is OFF).
Error check	First time: 86 A6 Second time: 87 6A	CRC checksum calculation result
End	-	Silent interval

*1 Home return is not performed even if 1010_H is sent to change the data while the servo is OFF (Refer to [Timing Chart at Startup described in each RC Controller Instruction Manual])

^{*2} To keep the previous status, send the previous status even if there is no change. As in the example above, keep the servo ON bit as "1" at home return as well.

(2) Move to position No. 1 using the position movement specification register (Address 9800_{H}).

Have the operation in (1) to complete the home-return operation before having this operation.

Query (silent intervals are inserted before and after the query)
 01 06 98 00 00 01 67 6A

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	Axis No.0 + 1
Function code [H]	06	
Start address [H]	98 00	Position movement specification register
Changed data [H]	00 01	Specify position No. 1 (*1)
Error check	67 6A	CRC checksum calculation result
End	-	Silent interval

*1 As soon as a position number is written to this register, the actuator starts moving. The CSTR (start signal) is not required.

(3) Move to position No. 1 using the position number command register (Address $0D03_H$).

Have the operation in (1) to complete the home-return operation before having this operation.

- Query (silent intervals are inserted before and after the query)
 - First time: 01 06 0D 03 00 01 BA A6 (Specify position No. 1)
 - Second time: 01 06 0D 00 10 00 86 A6 (Turn OFF the CSTR (start signal))
 - Third time: 01 06 0D 00 10 08 87 60 (Turn ON the CSTR (start signal))

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address [H]	01	Axis No.0 + 1
Function code [H]	06	
Start address [H]	First time: 0D 03 Second time: 0D 00 Third time: 0D 00	First time: Specify position No. Second time: Device control register 1 Third time:: Device control register 1
Changed data [H] First time: 00 01 Second time: 10 00 Third time: 10 08		First time: Specify position No. 1 Second time: Device control register 1 (SON) is ON Third time: Device control register 1 (SON+CSTR) is ON
Error check	First time: BAA6 Second time: 86 A6 Third time: 87 60	CRC checksum calculation result
End	-	Silent interval

* To keep the previous status, send the previous status even if there is no change.

As in the example above, keep the SON (servo ON) bit as "1" at other than servo OFF.

5.6 Direct Writing of Positioning Data (Function code 10)

5.6.1 Numerical Value Movement Command

[1] Function

Specify the target position in PTP positioning operation using absolute coordinates. It is possible to command the actuator to move via numerical values by writing directly to the group of registers at addresses from 9900_H to 9908_H (can be set in one message). Values of all registers, other than the control flag specification register (Address: 9908_H), will become effective once the values are sent. If there is no need to change the target position, positioning band, speed, acceleration/deceleration, push-current limiting value and control specification, therefore, each subsequent numerical movement command can be issued simply by writing a desired register that can effect an actual movement command based on changing of the applicable register alone (refer to [[2] Start address list]).

[2] Start address list

This group of registers is used to move the actuator by specifying the target position coordinates, positioning band, speed acceleration/deceleration, push-operation current limit control specification flags and so on as numerical values.

Data of start addresses in the list (8 registers in total) can be changed with one transmission.

Address [H]	Symbol	Name	Sign	Able to effect an actual movement command by changing the applicable register alone	Register size	Byte size	Unit
9900	PCMD	Target position specification register	0	0	2	4	0.01mm
9902	INP	Positioning band specification register		×	2	4	0.01mm
9904	VCMD	Speed specification register		0	2	4	0.01mm/s
9906	ACMD	Acceleration/deceleration specification register		0	1	2	0.01G
9907	PPOW	Push-current limiting value specification register		0	1	2	%
9908	CTLF	Control flag specification register		× Initialization after each movement	1	2	-

[3] Query format

1 register = 2 bytes = 16-bit data

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to10 _H) 00 _H if broadcast is specified
Function code [H]	1	10	Numerical value specification
Start address [H]	2	Arbitrary	Refer to [5.6.1 [2] Start address list]
Number of registers [H]	2	Arbitrary	Refer to [5.6.1 [2] Start address list]
Number of bytes [H]	1	In accordance with the number of registers above	Input a number doubled to the register count indicated above
Changed data 1 [H]	2	-	Refer to [5.6.1 [2] Start address list]
Changed data 2 [H]	2	-	Refer to [5.6.1 [2] Start address list]
Changed data 3 [H]	2	-	Refer to [5.6.1 [2] Start address list]
:	:	-	:
Error check [H]	2	CRC (16 bits)	
End	-	-	Silent interval
Total number of bytes	Up to 256	-	

[4] Response format

When normally changed, the response message responds with a copy of the query message excluding the number of bytes and changed data.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to10 _H) 00 _H if broadcast is specified
Function code [H]	1	10	Numerical value specification
Start address [H]	2	Arbitrary	Refer to [5.6.1 [2] Start address list]
Number of registers [H]	2	Arbitrary	Refer to [5.6.1 [2] Start address list]
Error check [H]	2	CRC (16 bits)	
End	-	-	Silent interval
Total number of bytes	8	-	

[5] Detailed explanation of registers

- Target position specification register (PCMD)
 - This register specifies the target position in PTP positioning operation using absolute coordinates. The value of this register is set in units of 0.01 mm in a range of -9999999 to 999999 (FFF0BDC1_H ^(Note 1) to 000F423F_H). When the absolute coordinate is indicated, operation starts with 0.2mm in front ^(Note 2) of the soft limit setting value as the target position if the setting of the parameter exceeds the soft limit. The actuator will start moving when the lower word of this register (symbol: PCMD, address: 9900_H) is rewritten. In other words, a numerical movement command can be issued simply by writing a target position in this register.
 - Note 1 To set a negative value, use a two's complement.
 - Note 2 For a revolution axis set to Index Mode, the soft limit setting value is the target position.
- Positioning band register (INP)

This register is used in two different ways depending on the type of operation. The first way is the normal positioning operation, where it specifies the allowable difference between the target position and current position to be used in the detection of position complete. The second way is the push-motion operation, where it specifies the push-motion band. The value of this register is set in units of 0.01mm in a range of 1 to 999999 (00000001_{H} to $000F423F_{H}$). Whether the normal operation or push-motion operation is specified by the applicable bit in the control flag specification register as explained later. Changing this register alone will not start actuator movement.

Caution

- It is necessary that the positioning band is at or more than the value figured out with the formulas below.
 - For Servo motor: Actuator Lead Length ÷ Encoder Pulse
 - For Pulse Motor: Actuator Lead Length ÷ Encoder Pulse × 3
- Apply the servo motor formula for RCP6 Actuator
- Speed specification register (VCMD)

This register specifies the moving speed. The value of this register is set in units of 0.01mm/s in a range of 1 to 999999 (00000001_H to $000F423F_H$). If the specified value exceeds the maximum speed set by a parameter, an alarm will generate the moment a movement start command is issued.

The actuator will start moving when this lower word of this register is rewritten. In other words, the speed can be changed while the actuator is moving, simply by rewriting this register.

Acceleration/deceleration specification register (ACMD)

This register specifies the acceleration or deceleration. The value of this register is set in units of 0.01G in a range of 1 to 300 (0001_{H} to $012C_{\text{H}}$). If the specified value exceeds the maximum acceleration or deceleration set by a parameter, an alarm will generate the moment a movement start command is issued.

The actuator will start moving when this register is rewritten. In other words, the acceleration/deceleration can be changed while the actuator is moving, simply by rewriting this register.

Push-current limiting value (PPOW)

Set the current limit during push-motion operation in PPOW. Set an appropriate value by referring to the table below.

Actuator model name	Pushable range [%]	Settable range (input value) [H]
Actuator other than RCS2-RA13R	20 to 70 ^(Note 1)	33 to B2
RCS2-RA13R	20 to 200	33 to 1FE

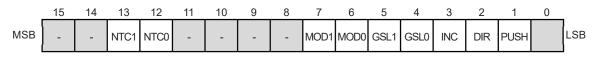
Note 1 The setting ranges may vary depending on the actuator.

For details, refer to the [IAI catalog] or [instruction manual of actuator].

The actuator will start moving when this register is rewritten. In other words, the current limiting value can be changed during push-motion operation simply by rewriting this register.

Sample push-motion current setting

• When setting the current to 20%


255 (100%) × 0.2 (20%) = 51 \rightarrow 33_H (convert into hexadecimal number)

Control Flag Specification Register (CTLF)

Set the method of operation.

If push-motion operation or incremental operation (pitch feed) is selected, set this register every time a movement command is issued. (This is because the register will be overwritten with the default value every time the actuator moves.)

CTLF bit structure

The details of each signal are described in the next page.

- Bit 1 (PUSH) = 0: Normal operation (default) 1: Push-motion operation
- Bit 2 (DIR) = 0: The direction of push-motion operation after completion of approach is defined as the forward direction (default).
 - 1: The direction of push-motion operation after completion of approach is defined as the reverse direction.

This bit is used to calculate the direction of final stop position from PCMD (PCMD) (. If this bit is set incorrectly, therefore, the target position will deviate from the specified position by a distance corresponding to $(2 \times INP)$ as shown in the figure below. If bit 1 is set to "0", the setting of this bit is invalid.

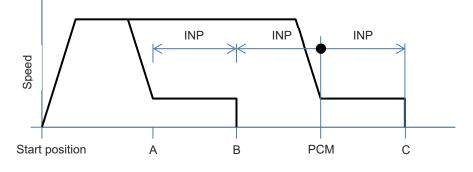


Fig. 5.6-1 Operating Direction in Push-motion Operation

• Bit 3 (INC) = 0: Normal operation (default) 1: Incremental operation (pitch feed)

Setting this bit to "1" will enable the actuator to operate relative to the current position. In this operation, the actuator behaves differently between normal operation and pushmotion operation (CTLF bit 1). While the travel is calculated with respect to the target position (PCMD) in normal operation, it is calculated relative to the current position in push-motion operation (when bit 1 = 1).

Here, since relative coordinate calculation involves adding up pulses in [mm], followed by conversion, unlike a calculation method involving addition after pulse conversion, "repeated relative movements will not cause position deviation as a result of cumulative errors corresponding to fraction pulses that are not divisible with certain lead settings".

• Bit 4 (GSL0), 5 (GSL1) = Refer to the table below

(ACON-CA/CB/CYB, SCON-CA/CAL/CB/ Servo Press Type and RCM-P6AC only)

Do not attempt to change the number from "0" for those other than the models above. Doing so may cause an error in operation.

GSL1	GSL0	Function
0	0	Select parameter set 0 (default)
0	1	Select parameter set 1
1	0	Select parameter set 2
1	1	Select parameter set 3

You can register a maximum of four servo gain parameter sets consisting of six parameters and move the actuator to each position by selecting a different parameter set every time.

For details, refer to the [Instruction manual of each controller].

• Bit 6 (MOD0), 7 (MOD1) = Refer to the table below

(ACON-C/CY/SE/CA/CB/CYB, DCON-CA/CB/CYB, PCON-CA/CFA/CB/CFB/CYB, SCON-C/CA/CAL/CB, ERC3, RACON and RCM-P6AC only, and SCON Servo Press Type is not applicable)

MOD1	MOD0	Function
0	0	Trapezoid pattern (default)
0	1	S-motion
1	0	Primary delay filter
1	1	Cannot be used.

These signals are used to select the acceleration/deceleration pattern characteristics. Set one of the patterns before issuing an actuator movement command.

For details, refer to the [Instruction manual of each controller].

• Bit 12 (NTC0), 13 (NTC1) = Refer to the table below

(ACON-CA/CB/CYB, SCON-CA/CAL/CB and RCM-P6AC only, and SCON Servo Press Type is not applicable)

NTC1	NTC0	Function
0	0	Do not use vibration control (default).
0	1	Select parameter set 1
1	0	Select parameter set 2
1	1	Select parameter set 3

When vibration control is used, you can register a maximum of three parameter sets and move the actuator to each position by selecting a different parameter set every time. For details, refer to the [Instruction manual of each controller].

[6] Example of use

Examples of different operations are shown in (1) to (7) below.

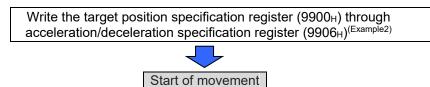
(1) Move by changing the target position. (All data other than the target position are the default values of their respective parameters.)

Conditions: The operation conditions conform to the default speed, default acceleration/deceleration and default positioning band set by the controller's user parameters. Only the target position is changed to move the actuator.

- complement: Controller's user parameters
- Default speed (parameter No. 8) → Maximum speed of the applicable actuator as specified in the catalog
- Default acceleration/deceleration (parameter No. 9) → Rated acceleration of the applicable actuator as specified in the catalog
- Default positioning band (parameter No. 10) \rightarrow Default value = 0.1mm

Write the target position specification register (9900_H) ^(Example 1)

(Example1) Target position: 50 mm


Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	Need not be set.				

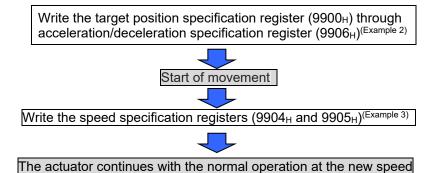
■ Query: <u>01 10 9900 0002 04 0000 1388 38AF</u>

- Response: 01 10 9900 0002 6F54
 - * The query message is copied, except for the number of bytes and new data, and returned as a response.
- Breakdown of Query Message

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address	01	Axis No.0 + 1
Function code	10	
Start address	99 00	The starting address corresponds to the setting of target position specification register 9900_{H} .
Number of registers	00 02	Addresses 9900_{H} to 9901_{H} are written.
Number of bytes	04	2 registers \times 2 = 4 bytes \rightarrow 4_{H}
New data 1, 2 (target position)	00 00	All upper bits of the 32-bit data are "0".
Input unit (0.01mm)	13 88	$50mm\times100=5000\rightarrow1388_{H}$
Error check	38 AF	CRC checksum calculation result $\rightarrow 38 \text{AF}_{\text{H}}$
End	-	Silent interval
Total number of bytes	13	

- (2) Move by changing the target position. (as well as data other than the target position).
 - Conditions: Change the target position, speed and acceleration/deceleration each time the actuator is moved, with the actuator speed changed at a given time during movement.

(Example 2) Target position: 50 mm


Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	0.1	100	0.3	Need r	not be set.

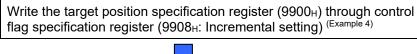
- Query: 01 10 9900 0007 0E 0000 1388 0000 000A 0000 2710 001E 50CF
- Response: 01 10 9900 0007 AF57
 - * The query message is copied, except for the number of bytes and new data, and returned as a response.
- Breakdown of Query Message

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address	01	Axis No.0 + 1
Function code	10	
Start address	99 00	The starting address corresponds to the setting of target position specification register 9900_{H} .
Number of registers	00 07	Addresses 9900 $_{\text{H}}$ to 9906 $_{\text{H}}$ are written.
Number of bytes	0E	7 registers $\times2$ = 14 bytes \rightarrow E_{H}
New data 1, 2	00 00	All upper bits of the 32-bit data are "0".
(target position) Input unit (0.01mm)	13 88	50mm × 100 = 5000 \rightarrow 1388 _H
New data 3, 4	00 00	All upper bits of the 32-bit data are "0".
(Positioning band) Input unit (0.01mm)	00 0	$0.1mm \times 100 = 10 \rightarrow 000A_{H}$
New data 5, 6 (Speed)	00 00	All upper bits of the 32-bit data are "0".
Input unit (0.01mm/s)	27 10	100mm/s × 100 = 10000 \rightarrow 2710 _H
New data 7 (Acceleration/deceleration) Input unit (0.01G)	00 1E	$0.3G \times 100 = 30 \rightarrow 001E_H$
Error check	50 CF	CRC checksum calculation result $\rightarrow 50 CF_{H}$
End	-	Silent interval
Total number of bytes	23	

- (3) Change the speed while the actuator is moving.
 - Conditions: Change the target position, speed and acceleration/deceleration each time the

actuator is moved, with the actuator speed changed at a given time during movement.

(Example 3) Change the speed from 100mm/s to 50mm/s while the actuator is moving.


Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	0.1	$100 \rightarrow 50$	0.3	Need no	ot be set.

1) Start the movement at a speed of 100mm/s. Refer to [above example (2) Move by changing the target position.].

- Query: 01 10 9900 0007 0E 0000 1388 0000 000A 0000 2710 001E 50CF
- Response: 01 10 9900 0007 AF57
- 2) Change the speed to 50mm/s.
 - Query: <u>01 10 9904 0002 04 0000 1388 395C</u>
 - Response: 01 10 9904 0002 2E95
 - * The query message is copied, except for the number of bytes and new data, and returned as a response.
 - Breakdown of Query Message (Change the speed to 50mm/s. (Refer to the [Example 2] for the query message used to start the movement at 100mm/s)).

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address	01	Axis No.0 + 1
Function code	10	
Start address	99 04	The starting address corresponds to the setting of target position specification register $9904_{\rm H}$.
Number of registers	00 02	Addresses 9904 $_{\rm H}$ to 9905 $_{\rm H}$ are written.
Number of bytes	04	2 registers \times 2 = 4 bytes \rightarrow 4 _H
New data 5, 6 (Speed) Input unit (0.01mm/s)	00 00	All upper bits of the 32-bit data are "0".
	13 88	50mm/s \times 100 = 5000 \rightarrow 1388 _H
Error check	39 5C	CRC checksum calculation result \rightarrow 395C _H
End	-	Silent interval
Total number of bytes	13	

- (4) Move in the incremental (pitch feed) mode.
 - Conditions: The operation conditions conform to the default speed, default acceleration/deceleration and default positioning band set by the controller's user parameters. Only the pitch width is changed to move the actuator.

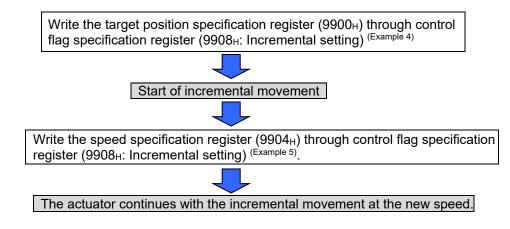
Complement

 Addresses 9900_H and 9908_H alone cannot be changed in a single data transmission. Since all addresses are sequential, send two messages if 9900_H and 9908_H alone are changed. If you want to send only one message, write all addresses from 9900_H to 9908_H.

(Example 4) Move in the incremental mode by setting the pitch to 10mm.

Pitch [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
10	0.1	100	0.3	0	Incremental (bit 3 = 1)

■ Query: 01 10 9900 0009 12 0000 03E8 0000 000A 0000 2710 001E 0000 0008 F3A0


■ Response: <u>01 10 9900 0009 2E93</u>

* The query message is copied, except for the number of bytes and new data, and returned as a response.

Breakdown of Query Message

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address	01	Axis No.0 + 1
Function code	10	
Start address	99 00	The starting address corresponds to the setting of target position specification register 9900 _H .
Number of registers	00 09	Addresses 9900_{H} to 9908_{H} are written.
Number of bytes	12	9 registers $\times2$ = 18 bytes $\rightarrow12_{H}$
New data 1, 2	00 00	All upper bits of the 32-bit data are "0".
(target position) Input unit (0.01mm)	03 E8	$10mm \times 100 = 1000 \rightarrow 03E8_{H}$
New data 3, 4	00 00	All upper bits of the 32-bit data are "0".
(Positioning band) Input unit (0.01mm)	00 0Ан	$0.1mm \times 100 = 10 \rightarrow 000A_H$
New data 5, 6 (Speed)	00 00	All upper bits of the 32-bit data are "0".
Input unit (0.01mm/s)	27 10	100mm/s \times 100 = 10000 \rightarrow 2710 _H
New data 7 (Acceleration/deceleration) Input unit (0.01G)	00 1E	0.3G × 100 = 30 → 001E _H
New data 8 (Push) Input unit [%]	00 00	$0\% \rightarrow 0_H$
New data 9 (Control flag)	00 08	(Incremental setting) $1000_b \rightarrow 0008_H$
Error check	F3 A0	CRC checksum calculation result \rightarrow F3A0_H
End	-	Silent interval
Total number of bytes	27	

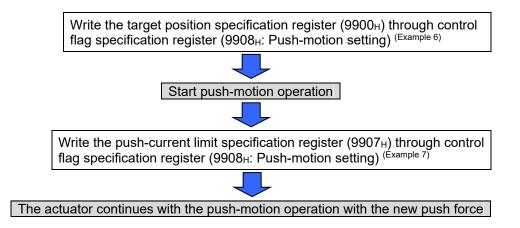
- (5) Change the speed during incremental movement (pitch feed).
 - Conditions: Change the target position, speed and acceleration/deceleration each time the actuator is moved, with the positioning band changed at a given time during movement.

Complement

After the control flag specification register (9908_H) is set, the register will return to the default value (0_H: Normal movement) once the actuator starts moving. Accordingly, you must set the control flag specification register (9908_H) and send it again if another incremental or push-motion operation is to be performed.

(Example 5) Change the speed from 100mm/s to 50mm/s while the actuator is moving.

Pitch [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
10	0.1	$100 \rightarrow 50$	0.3	0	Incremental (bit 3 = 1)


1) Start moving at a speed of 100mm/s. Refer to [above example 4 Moving in the incremental (pitch feed) mode].

■ Query: 01 10 9900 0009 12 0000 03E8 0000 000A 0000 2710 001E 0000 0008 F3A0

- Response: 01 10 9900 0009 2E93
- 2) Change the speed to 50 mm/s.
 - Query: 01 10 9904 0005 0A 0000 1388 001E 0000 0008 BD83
 - Response: 01 10 9904 0005 6F57
 - * The query message is copied, except for the number of bytes and new data, and returned as a response.
 - Breakdown of Query Message (Change the speed to 50mm/s. (Refer to the [above example] for the query message used to start the movement at 100mm/s)).

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address	01	Axis No.0 + 1
Function code	10	
Start address	99 04	The start address is the target position specification register 9904_{H} .
Number of registers	00 05	Addresses 9904 $_{\rm H}$ to 9908 $_{\rm H}$ are written.
Number of bytes	0A	5 registers \times 2 = 10 bytes \rightarrow A _H
New data 5, 6 (Speed)	00 00	All upper bits of the 32-bit data are "0".
Input unit (0.01mm/s)	13 88	$50 \text{mm/s} \times 100 = 5000 \rightarrow 1388_{\text{H}}$
New data 7 (Acceleration/deceleration) Input unit (0.01G)	00 1E	$0.3G\times 100=30\rightarrow 001E_{H}$
New data 8 (Push) Input unit [%]	00 00	$0\% ightarrow 0_H$
New data 9 (Control flag)	00 08	(Incremental setting) $1000_b \rightarrow 0008_H$
Error check	BD 83	CRC checksum calculation result \rightarrow BD83 _H
End	-	Silent interval
Total number of bytes	19	

- (6) Perform a push-motion operation. (changing pushing force during push-operation) Conditions: Perform push-motion operation by changing the push force at a desired to
 - onditions: Perform push-motion operation by changing the push force at a desired time while the actuator is pushing the work part.

(Example 6) Perform a push-motion operation for 20mm from the 50mm position at a currentlimiting value of 70%.

Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	20	100	0.3	70	Push-motion operation (bit 1 = 1, bit 2 = 0, 1)

■ Query: 01 10 9900 0009 12 0000 1388 0000 07D0 0000 2710 001E 00B2 0006 C377

■ Response: <u>01 10 9900 0009 2E93</u>

* The query message is copied, except for the number of bytes and new data, and returned as a response.

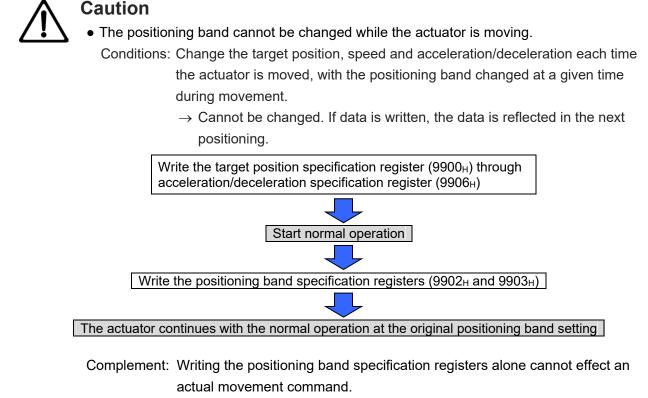
Breakdown of Query Message

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address	01	Axis No.0 + 1
Function code	10	
Start address	99 00	The starting address corresponds to the setting of target position specification register 9900 _H .
Number of registers	00 09	Addresses 9900 $_{\text{H}}$ to 9908 $_{\text{H}}$ are written.
Number of bytes	12	9 registers $\times2$ = 18 bytes $\rightarrow12_{H}$
New data 1, 2	00 00	All upper bits of the 32-bit data are "0".
(target position) Input unit (0.01mm)	13 88	$50mm \times 100 = 5000 \rightarrow 1388_H$
New data 3, 4	00 00	All upper bits of the 32-bit data are "0".
(Positioning band) Input unit (0.01mm)	07 D0	$20mm \times 100 = 2000 \rightarrow 07D0_H$
New data 5, 6(Speed)	00 00	All upper bits of the 32-bit data are "0".
Input unit 〔0.01mm/s)	27 10	100mm/s ×100 = 10000 \rightarrow 2710 _H
New data 7 (Acceleration/deceleration) Input unit (0.01G)	00 1E	0.3G × 100 = 30 → 001E _H
New data 8 (Push) Input unit [%]	00 B2	$70\% ightarrow B2_H$
New data 9 (Control flag)	00 06	(Push setting) $0110_b \rightarrow 0006_H$
Error check	C3 77	CRC checksum calculation result $\rightarrow C377_{H}$
End	-	Silent interval
Total number of bytes	27	

(Example 7) Change the push current limit from 70% to 50% during a push-motion operation.

Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	20	100	0.3	$70 \rightarrow 50$	Push-motion operation (bit 1 = 1, bit 2 = 0, 1)

■ Query: <u>01 10 9907 0002 04 007F 0006 C5C5</u>


■ Response: <u>01 10 9907 0002 DE95</u>

* The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address	01	Axis No.0 + 1
Function code	10	
Start address	99 07	The start address is the target position specification register $9907_{\rm H}$
Number of registers	00 02	Addresses 9907_{H} to 9908_{H} are written.
Number of bytes	04	2 registers \times 2 = 4 bytes \rightarrow 4_H
New data 8 (Push) Input unit [%]	00 7F	$50\% ightarrow 7F_{H}$
New data 9 (Control flag)	00 06	(Push setting) $0110_b \rightarrow 0006_H$
Error check	C5 C5	CRC checksum calculation result $\rightarrow C5C5_{H}$
End	-	Silent interval
Total number of bytes	13	

(7) Note (changing positioning band during movement)

Therefore, the data changed by writing the positioning band specification registers (9902_H and 9903_H) will become effective when the next movement command is executed.

5.6.2 Writing Position Table Data

[1] Function

Position table data can be changed using this query.

Every time an access is made to the start address list (Address +0000_H to +000E_H), it is read out of the non-volatile memory in the unit of 1 position data, and gets stored to the non-volatile memory (EEPROM, FeRAM) after the writing is executed. Check the limit for number of writing from the [basic specifications described in an instruction manual for each controller].

* The EEPROM has a rewrite life of approx. 100, 000 times due to device limitations. If the position table data is written frequently, the EEPROM will reach its rewrite life quickly and a failure may occur. Accordingly, be careful not to let unexpected loops, etc., occur due to the logics on the host side.

There is no limit to number of writing for FeRAM.

[2] Start address list

In a query input, each address is calculated using the formula below:

1000 $_{\text{H}}$ + (16 × Position No.) $_{\text{H}}$ + Address (Offset) $_{\text{H}}$

Example : Change the speed command register for position No. 200

1000_н + (16 × 200 = 3200)_н + 4_н

- = 1000н + С80н + 4н
- = 1C84_H

"1C84" becomes the input value for the start address field of this query.

Note The maximum position number varies depending on the controller model and the PIO pattern currently specified.

Address	Symbol	Name	Sign	Register size	Byte size	Input unit
+0000	PCMD	Target position	\bigcirc	2	4	0.01mm
+0002	INP	Positioning band		2	4	0.01mm
+0004	VCMD	Speed command		2	4	0.01mm/s
+0006	ZNMP	Individual zone boundary +	0	2	4	0.01mm
+0008	ZNLP	Individual zone boundary -	0	2	4	0.01mm
+000A	ACMD	Acceleration command		1	2	0.01G
+000B	DCMD	Deceleration command		1	2	0.01G
+000C	PPOW	Push-current limiting value		1	2	%
+000D	LPOW	Load current threshold		1	2	%
+000E	CTLF	Control flag specification		1	2	

Position data change registers

* Addresses starting with "+" indicate offsets.

Note RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC cannot write in to this address. They return an exceptional response.

[3] Query format

1 register = 2 bytes = 16 bit data

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-		Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01μ to 10μ) 00μ if broadcast is specified
Function code [H]	1	10	Numerical value specification
Start address [H]	2	Arbitrary	Refer to [5.6.2 [2] Start address list]
Number of registers [H]	2	Arbitrary	Refer to [5.6.2 [2] Start address list]
Number of bytes [H]	1	In accordance with the above registers	A value corresponding to twice the number of registers specified above is input.
Changed data 1 [H]	2	-	Refer to [5.6.2 [2] Start address list]
Changed data 2 [H]	2	-	Refer to [5.6.2 [2] Start address list]
Changed data 3 [H]	2	-	Refer to [5.6.2 [2] Start address list]
:	:	-	:
Error check [H]		CRC (16 bits)	
End	-	-	Silent interval
Total number of bytes	Up to 256	-	

[4] Response format

If the change is successful, a response message that is effectively a copy of the query message, except for the byte count and new data, will be returned.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	-	-	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) "00 _H " if broadcast is specified
Function code [H]	1	10	Numerical value specification
Start address [H]	2	Arbitrary	Refer to [5.6.2 [2] Start address list0
Number of registers [H]	2	Arbitrary	Refer to [5.6.2 [2] Start address list0
Error check [H]	2	CRC (16 bits)	
End	-	-	Silent interval
Total number of bytes	8	-	

[5] Detailed explanation of registers

Target position specification registers (PCMD)

The positioning target position in PTP Operation should be indicated in a position on the absolute coordinates. The value of this register is set in units of 0.01mm in a range of -999999 to 9999999 (FFF0BDC1_H (Note 1) to 000F423F_H).

When the absolute coordinate is indicated, operation starts with 0.2mm in front (Note 2) of the soft limit setting value as the target position if the setting of the parameter exceeds the soft limit. The actuator will start moving when the lower word of this register (symbol: PCMD, address: 9900_{H}) is rewritten. In other words, a numerical movement command can be issued simply by writing a target position in this register.

Note 1 To set a negative value, use a two's complement.

Note 2 For a revolution axis set to Index Mode, the soft limit setting value is the target position.

Positioning band Specification Register (INP)

This register is used in two different ways depending on the type of operation. The first way is the normal positioning operation, where it specifies the allowable difference between the target position and current position to be used in the detection of position complete. The second way is the push-motion operation, where it specifies the push-motion band. The value of this register is set in units of 0.01mm in a range of 1 to 999999 (00000001_H to $000F423F_{H}$).

Whether the normal operation or push-motion operation is specified by the applicable bit in the control flag specification register as explained later.

Caution

- It is necessary that the positioning band is at or more than the value figured out with the formulas below.
 - For Servo motor: Actuator Lead Length ÷ Encoder Pulse
 - For Pulse Motor: Actuator Lead Length ÷ Encoder Pulse × 3

Apply the servo motor formula for RCP6 Actuator

Speed Specification Register (VCMD)

This register specifies the moving speed. The value of this register is set in units of 0.01 mm/s in a range of 1 to 999999 (00000001_H to $000F423F_H$). If the specified value exceeds the maximum speed set by a parameter, an alarm will generate the moment a movement start command is issued.

■ Individual Zone Boundaries ± (ZNMP, ZNLP)

These registers output zone signals that are effective only during positioning, separately from the zone boundaries set by parameters.

Set in ZNMP the positive zone signal output boundary expressed using absolute coordinates, and set the negative zone signal output boundary in ZNLP. The corresponding bit in the zone register remains ON while the current position is within these positive and negative boundaries. The value of this register is set in units of 0.01mm, and in a range of - 999999 to 9999999 (FFF0BDC1_H (Note 1) to 000F423F_H) for both registers. However, ZNMP must be greater than ZNLP.

Set the same value in both ZNMP and ZNLP to disable the individual zone output.

Note 1 To set a negative value, use a two's complement.

■ Acceleration specification register registers (ACMD)

This register specifies the acceleration during positioning. The value of this register is set in units of 0.01G in a range of 1 to 300 (1 to 0.01C_H). If the specified value exceeds the maximum acceleration set by a parameter, an alarm will generate the moment a movement start command is issued.

Deceleration specification register (ACMD)

This register specifies the deceleration during positioning.

The value of this register is set in units of 0.01G in a range of 1 to $300 (1 \text{ to } 012C_{H})$. If the specified value exceeds the maximum deceleration set by a parameter, an alarm will generate the moment a movement start command is issued.

Push-current limiting value (PPOW)

Set the current limit during push-motion operation in PPOW. Set an appropriate value by referring to the table below.

Actuator model name	Pushable range [%]	Settable range (input value) [H]	
Actuator other than RCS2-RA13R	20 to 70 ^(Note 1)	33 to B2	
RCS2-RA13R	20 to 200	33 to 1FE	

Note 1 The setting ranges may vary depending on the actuator.

For details, refer to the [IAI catalog] or [operation manual of actuator].

Operation should start once this register is overwritten. Therefore, it can be realized by this register when it is required to change the current limit during the pressing operation. Sample push-motion current setting:

• When setting the current to 20% 255 (100%) × 0.2 (20%) = 51 \rightarrow 33_H (Convert into hexadecimal number)

Load Output Current Threshold (LPOW)

To perform load output judgment, set the current threshold in LPOW. Set an appropriate value according to the actuator used, just like the push current limit (PPOW). If load output judgment is not performed, set "0".

Control Flag Specification register (CTLF)

Refer to [5.6.1 [5] Control flag specification register].

[6] Sample query

A sample query that rewrites all data of position No. 12 of axis No. 0 is shown below.

Target position [mm]	Positioning band [mm]	Speed [mm/s]	Individual zone boundary+ [mm]	Individual zone boundary- [mm]	Acceleration [G]	Deceleration [G]	Push [%]	Load Output Current Threshold [%]	Movement control
100	0.1	200	60	40	0.01	0.3	0	0	Normal movement

Query (silent intervals are inserted before and after the query)
 01 10 10 C0 00 0F 1E 00 00 27 10 00 00 00 0A 00 00 4E 20 00 00 17 70 00 00 0F A0 00 01
 00 1E 00 00 00 00 00 70 1E

- Received response <u>01 10 10 C0 00 0F 84 F1</u>
 - * The query message is copied, except for the number of bytes and new data, and returned as a response.

Breakdown of Query Message

Field	RTU mode 8-bit data	Remarks
Start	-	Silent interval
Slave address	01	Axis No.0 + 1
Function code	10	
Start address	10 C0	The start address is the target position specification register $10C0_{H}$ for position No. 12. ^(*1)
Number of registers	00 0F	Total 15 registers of register symbols PCMD to CTLF are specified to be written.
Number of bytes	1E	15 registers \times 2 = 30 bytes \rightarrow 1E _H
New data 1, 2	00 00	All upper bits of the 32-bit data are "0".
(Target position) Input unit (0.01mm)	27 10	$100mm \times 100 = 10000 \rightarrow 2710_{H}$
New data 3, 4	00 00	All upper bits of the 32-bit data are "0".
(Positioning band) Input unit (0.01mm)	00 0A	$0.1mm \times 100 = 10 \rightarrow 000A_{H}$
New data 5, 6 (Speed)	00 00	All upper bits of the 32-bit data are "0".
Input unit (0.01mm/s)	4E 20	$200\text{mm/s}\times100=20000\rightarrow4\text{E}20\text{H}$
New data 7, 8	00 00	All upper bits of the 32-bit data are "0".
(Individual zone boundary+) Input unit (0.01mm)	17 70	$60mm \times 100 = 6000 \rightarrow 1770_H$
New data 9, 10	00 00	All upper bits of the 32-bit data are "0".
(Individual zone boundary-) Input unit (0.01mm)	0F A0	$40mm \times 100 = 4000 \rightarrow 0FA0_H$
New data 11 (Acceleration) Input unit (0.01G)	00 01	0.01G × 100 = 1 → 0001 _H
New data 12 (Deceleration) Input unit (0.01G)	00 1E	$0.3G \times 100 = 30 \rightarrow 001E_H$
New data 13 (Push) Input unit [%]	00 00	$0\% \rightarrow 0_H$

Field	RTU mode 8-bit data	Remarks
New data 14 (Threshold) Input unit [%]	00 00L	$0\% \rightarrow 0_H$
New data 15 (Control flag)	00 00	All bits are "0", because normal operation is specified. $0000_b \rightarrow 0000_H$
Error check	70 1E	CRC checksum calculation result \rightarrow 701E _H
End	-	Silent interval
Total number of bytes	39	

^{*1} Calculation of start address

Example: All data of position No. 12 is changed. Accordingly, the target position address of position No. 12 is set in the start address field of this query.

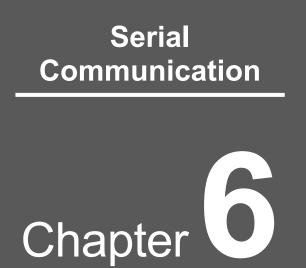
1000_H + (16 × 12 = 192)_H + 0_H = 1000_H + C0_H + 0_H

= 10C0_H

"10C0" becomes the input value for the start address field of this query.

Shown below are the screens of IAI's IA-OS, indicating how position data changes before and after a query message is sent.

(Note) It is not possible to connect both PC software and Modbus at the same time. The example below shows the case when switching the connection between IA-OS and Modbus.


Before a query is sent

Positi	on data edit[Axi	is No. 0]										×
Upda Edit su	te Save			TEST Test run								
No.	Position [mm]	Velocity [mm/s]	Acceleration [G]	Deceleration [G]	Operation type (Pressing force[%])	Load current threshold[%]	Positioning band[mm] / pressing band[mm]	Zone + side [mm]	Zone - side [mm]	Acceleration/deceleration mode	Positioning method	^
9												
10												
11												
12												

After a query is sent

Jpdat	e Save	Transfe	er Print	TEST Test run							
lit su	port functio	n display sele	ection Hide	~							
lo.	Position [mm]	Velocity [mm/s]	Acceleration [G]	Deceleration [G]	Operation type (Pressing force[%])	Load current threshold[%]	Positioning band[mm] / pressing band[mm]	Zone + side [mm]	Zone - side [mm]	Acceleration/deceleration mode	Positioning method
9											
10											
12	1 0.00	200.00	0.01	0.30	Positioning	0	0.10	60.00	40.00	0:Trapezoid	0:Absolute position
3											

The overwritten data is not displayed until the button is pressed or the Edit Position Data window is reopened.

Modbus ASCII

6.1	Mess	Message Frames (Query and Response)6-1							
6.2	ASCI	I Code Table ······6-5							
6.3	List o	f ASCII Mode Queries······6-6							
6.4	Data	and Status Reading (Function code 03) ·······6-10							
	6.4.1	Reading Consecutive Multiple Registers ······6-10							
	6.4.2	Alarm Detail Description Reading (ALA0, ALC0, ALT0) 6-14							
	6.4.3	Position Data Description Reading (PCMD, INP, VCMD, ZNMP,							
		ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF) ·······6-16							
	6.4.4	Total moving count Reading (TLMC)							
	6.4.5	Total moving distance Reading (ODOM) (in 1mm units)							
	6.4.6	Current Time Reading (TIMN) ······6-23							
	6.4.7	Total FAN Driving Time Reading (TFAN)······6-27							
	6.4.8	Current Position Reading (PNOW) ······6-29							
	6.4.9	Currently Generated Alarm Code Reading (ALMC)6-31							
	6.4.10	I/O Port Input Signal Status Reading (DIPM) ······ 6-33							
	6.4.11	I/O Port Output Signal Status Reading (DOPM) ······ 6-38							
	6.4.12	Controller Status Signal Reading 1 (DSS1) ······ 6-43							

	6.4.13	Controller Status Signal Reading 2 (DSS2) ······ 6-45
	6.4.14	Controller Status Signal Reading 3 (DSSE)6-47
	6.4.15	Controller Status Signal Reading 4 (STAT) 6-49
	6.4.16	Current Speed Reading (VNOW) ·······6-51
	6.4.17	Current Ampere Reading (CNOW) ······ 6-53
	6.4.18	Deviation Reading (DEVI) ······6-55
	6.4.19	Total Time after Power On Reading (STIM)
	6.4.20	Special Input Port Input Signal Status Reading (SIPM)
	6.4.21	Zone Output Signal Status Reading (ZONS) ······6-61
	6.4.22	Positioning Completed Position Number Reading (POSS)
		Exected Program Number Register (Servo Press Type) (POSS) \cdot 6-61
	6.4.23	Controller Status Signal Reading 5 (SSSE)
	6.4.24	Current Load ReadingSCON-CA/CB, PCON-CBP only6-67
	6.4.25	Overload Level Monitor Reading (OLLV)
		SCON-CA/CAL/CB Only6-69
	6.4.26	Press Program Alarm Code Reading (ALMP)
		Servo Press Type Only ······6-71
	6.4.27	Alarm Generated Press Program No. Reading (ALMP)
		Servo Press Type Only6-73
	6.4.28	Press Program Status Register Reading (PPST)
		Servo Press Type Only6-75
	6.4.29	Press Program Judgement Status Register Reading (PPJD)
		Servo Press Type Only6-77
6.5	Opera	ation Commands and Data Rewrite
	(Func	tion code 05)······6-79
	6.5.1	Writing to Coil ······6-79
	6.5.2	Safety Speed Enable/Disable Switching (SFTY) ·······6-80
	6.5.3	Servo ON/OFF (SON)6-82
	6.5.4	Alarm Reset (ALRS) 6-84
	6.5.5	Brake Forced Release (BKRL) ······6-86
	6.5.6	Pause (STP)6-88
	6.5.7	Home Return (HOME) ······6-90
	6.5.8	Positioning Start Command (CSTR) ······ 6-92
	6.5.9	Jog/Inch Switching (JISL) ····· 6-94
	6.5.10	Teaching Mode Command (MOD)
	6.5.11	Position Data Load Command (TEAC)
	6.5.12	Jog+ Command (JOG+) ······ 6-100

	6.5.13	Jog- Command (JOG-) ····· 6-102
	6.5.14	Start Positions 0 to 7 (ST0 to ST7) Movement Command
		(Limited to solenoid valve mode)6-104
	6.5.15	Load Cell Calibration Command (CLBR)6-106
	6.5.16	PIO/Modbus Switching Setting (PMSL) ······6-109
	6.5.17	Deceleration Stop (STOP) 6-111
	6.5.18	Axis operation permission (ENMV) (Servo Press Type Only) \cdots 6-113
	6.5.19	Program Home Position Movement (PHOM)
		(Servo Press Type Only) ····· 6-115
	6.5.20	Search Stop (SSTP) (Servo Press Type Only) ······ 6-117
	6.5.21	Program compulsoly finish (FPST) (Servo Press Type Only) ···· 6-119
	6.5.22	Program Start (PSTR) (Servo Press Type Only)······6-121
6.6	Direct	t Writing of Control Information (Function code 06) ··· 6-123
	6.6.1	Writing to Registers
6.7	Direct	t Writing of Positioning Data (Function code 10) ······6-128
	6.7.1	Numerical Value Movement Command
	6.7.2	Writing Position Table Data6-145

6.1 Message Frames (Query and Response)

The message frame of the serial communication in Modbus protocol should be as stated in the table below.

Start Address		Function code	Data	CRC Check	End
1 character	2 characters	2 characters	n characters	2 characters	2 characters
1 byte	2 bytes	2 bytes	nx2 bytes	2 bytes	2 bytes

[1] Start

The Start field is equivalent to the header field and ":" (colon) is used in the ASCII mode. It is expressed as $3A_{H}$ in ASCII code.

[2] Address

This field specifies the addresses of connected RC controllers (01_H to 10_H).

Set Address:

```
Address = axis number + 1
```

in ASCII code.

Example) The axis number is 30_H 32_H.

Caution

- The address is not equal to the corresponding axis number: be careful when making settings.
- ROBONET and RCP6S (RCP6S Series: RCP6S, RCM-P6PC, RCM-P6AC, RCM-P6DC) + PLC Connection Unit are not applicable for ASCII Mode.

[3] Function

The table below summarizes the function codes and functions that can be used with RC controllers.

Code [HEX]	Name	Function
01н	Read Coil Status	Read coils/DOs.
02н	Read Input Status	Read input statuses/DIs.
03н	Read Holding Registers	Read holding registers.
04н	Read Input Registers	Read input registers.
05н	Force Single Coil	Write one coil/DO.
06н	Preset Single Register	Write holding register.
07н	Read Exception Status	Read exception statuses.
0Fн	Force Multiple Coils	Write multiple coils/DOs at once.
10н	Preset Multiple Registers	Write multiple holding registers at once.
11н	Report Slave ID	Query a slave's ID.
17 _H	Read / Write Registers	Read/write registers.

Note This manual explains about mark function codes.

Reference

• The ROBONET gateway supports three types of function codes (03_H, 06_H and 10_H). Refer to the [Separate ROBONET Instruction manual (ME0208)]

[4] Data

Use this field to add data specified by a function code. It is also allowed to omit data if data addition is not specified by function codes.

[5] LRC Check

In the ASCII mode, an error check field conforming to the LRC method is automatically ^{*1} included in order to check the message content excluding the first colon and CR/LF. Moreover, checking is carried out regardless of the parity check method of individual characters in messages.

The LRC field consists of two ASCII code characters. The LRC value is calculated by the sender that appends the LRC field to the message. The recipient recalculates the LRC value while receiving the message, and compares the calculation result against the actual value received in the LRC field. If the two values do not match, an error will generate.

* The host side must create a function that calculates the LRC value.

LRC check calculation example (area is the target range of error check)

In case the message query is as follows: [':'] ["01"] ["05"] ["040B"] ["0000"] [LRC] [CR] [LF]

- 1) First, add all numerical values in units of bytes.
 - Total value added = $01_H + 05_H + 04_H + 0B_H + 00_H + 00_H = 15_H$
- 2) Next, an 8-bit-based 2's complement of this value is computed, yielding the value FFFFFEB_H. The LRC value is obtained by extracting the least significant byte. Thus the LRC value is "EB".

[6] End

This is equivalent to the trailer (delimiter), and use "CR/LF" in the ASCII mode. In ASCII code, 00_{H} and $0A_{H}$ are displayed.

[7] Broadcast

It is possible to send a query containing same data to all connected axes by specifying the address 00_{H} . In this case, no response is returned from the controllers.

Note, however, that the function codes etc. that can be used with this function are limited; care should be taken when using the function. Please check the function codes that can be used in [5.2 List of RTU Mode Queries].

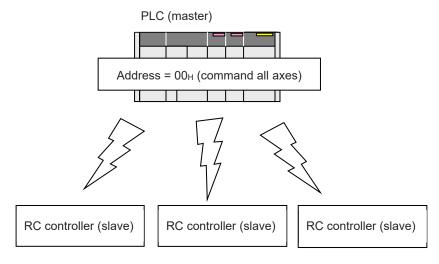
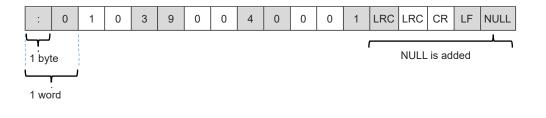


Fig. 6.1



Caution

- The sizes of send/receive buffers are set to 256 bytes for the RC controllers, respectively. Make sure to keep the messages small enough such that messages sent from the host side do not exceed the receive buffer and data requests do not exceed send buffer.
- If the number of data items results in an odd number of bytes, caution must be taken for the reasons below.

The data is communicated on a byte-by-byte basis in Modbus communication. In many cases, however, the data is treated in units of 2 bytes on the master side. If the number of data items becomes odd, 00_{H} (i.e., NULL) may be added automatically at the end of a packet in some cases.

Controllers are configured such that the Modbus RTU is basically used as the interface on the master side. Since the controller normally stands by for reception in the RTU mode, and then makes judgment whether the code is ASCII or not after the reception, it cannot manage header/delimiter fields. For this reason, communication in the ASCII mode is disabled in such cases.

ASCII Code Table 6.2

Most significant 3bit Least significant 4bit	0	1	2	3	4	5	6	7
0	NUL	DLE	SP	0	@	Ρ		р
1	SOH	DC1	!	1	А	Q	а	q
2	STX	DC2	"	2	В	R	b	r
3	ETX	DC3	#	3	С	S	С	S
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	E	U	e	u
6	ACK	SYN	&	6	F	V	f	v
7	BEL	ETB	٤	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	х
9	HT	EM)	9	I	Y	i	у
А	LF	SUB	*	:	J	Z	j	Z
В	VT	ESC	+	;	К	[k	{
С	FF	IS4	,	<	L	¥	I	I
D	CR	IS4	-	=	М]	m	}
E	SO	IS4		>	Ν	٨	n	
F	SI	IS4	/	?	0	_	0	DEL

ASCII Code (numbers and characters enclosed with • are converted and sent.)

• NUL: Null character

- ETX: End of text
- ACK: Acknowledgment •
- HT: Horizontal tab
- FF: Form feed
- SI: Shift in
- NAC: Negative acknowledgment
- CAN: Cancel • ESC: Escape

- SOH: Start of header EOT: End of transmission ٠
- BEL: Bell
- LF: Line feed
- CR: Carriage return
- Data link escape DLE:
- SYN: Synchronized characters
- EM: End of media
- SP: Space

- STX: Start of text
- ENQ: Enquiry ٠
- BS: Backspace • •
 - VT: Vertical tab
- SO: Shift out
- DC*: Device control * • ETB: End of transmission block
- DEL: Delete

Example) "1" is 31_H in ASCII code and "00110001" in binary number presentation.

6.3 List of ASCII Mode Queries

FC: Function code

PIO: Parallel I/O (input/output of an I/O connector)

* The circle marks in the Simultaneous use with PIO and Broadcast columns indicate queries that can be used simultaneously with PIO and in broadcast communication, respectively.

FC	Function	Symbol	Function Summary	Combination with PIO	Broad- cast	Reference
03	Multiple FC03 register reading	None	This function can be used to successively read multiple registers that use function 03.	0		6.4.1
03	Alarm detail description reading	ALA0 ALC0 ALT0	This bit reads the alarm codes, alarm addresses, detail codes and alarm occurrence time (passed time) that lately occurred.	0		6.4.2
03	Position data ^(Note 1) reading	Refer to right	This bit reads the indicated number in the position data. (PCMD, INP, VCMD, ZNMP, ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF)	0		6.4.3
03	Total moving count reading	TLMC	This bit reads the Total moving count.	0		6.4.4
03	Total moving distance reading	ODOM	This bit reads the Total moving distance in units of 1 m.	0		6.4.5
03	Current time reading	TIMN	This bit reads the current time. (PCON-CA/CFA/CB/CFB, ACON-CA/CB, DCON- CA/CB and SCON-CA/CAL/CB only)	0		6.4.6
03	Total FAN driving time reading	TFAN	This bit reads the Total FAN driving time. (PCON-CFA/CFB, SCON-CAL and SCON-CB (400W or more) only)	0		6.4.7
03	Current position reading	PNOW	This function reads the current actuator position in units of 0.01 mm.	0		6.4.8
03	Currently generated alarm code	ALMC	This function reads alarm codes that are presently detected.	0		6.4.9
03	I/O port input status reading	DIPM	This function reads the ON/OFF statuses of PIO input ports.	0		6.4.10
03	I/O port output status reading	DOPM	This function reads the ON/OFF statuses of PIO output ports.	0		6.4.10
03	Controller status signal reading 1 (device status 1) (Operation preparation status)	DSS1	 This function reads the following 14 statuses: (1) Emergency stop (2) Safety speed enabled/disabled (3) Controller ready (4) Servo ON/OFF (5) Missed work part in push-motion operation (6) Major failure (7) Minor failure (8) Absolute error (9) Brake (10) Pause (11) Home return completion (12) Position complete (13) Load cell calibration complete (14) Load cell calibration status 	Ο		6.4.12

6.3 List of ASCII Mode Queries

FC	Function	Symbol	Function Summary	Combination with PIO	Broad- cast	Reference
03	Controller status signal reading 2 (device status 2) (Operation preparation 1 status)	DSS2	 This function reads the following 15 statuses: (1) Enable (2) Load output judgment (check-range load current threshold) (3) Torque level (load current threshold) (4) Teaching mode (normal/teaching) (5) Position data load (normal/complete) (6) Jog+ (normal/command active) (7) Jog- (normal/command active) (8) Position complete 7 to 0 	0		6.4.13
03	Controller status signal reading 3 (extended device status) (Operation preparation 2 status)	DSSE	 This function reads the following 9 statuses: (1) Emergency stop (emergency stop input port) (2) Motor voltage low (3) Operation mode (AUTO/MANU) (4) Home return (5) Push-motion operation in progress (6) Excitation detection (7) PIO/Modbus switching (8) Position-data write completion status (9) Moving 	0		6.4.14
03	Controller status signal reading 4 (System status) (Controller status)	STAT	 This function reads the following 7 statuses: (1) Automatic servo OFF (2) Nonvolatile memory being accessed (3) Operation mode (AUTO/MANU) (4) Home return completion (5) Servo ON/OFF (6) Servo command (7) Drive source ON (normal/cut off) 	0		6.4.15
03	Current speed reading	VNOW	This function reads the current actuator speed in units of 0.01mm/s.	0		6.4.16
03	Current ampere reading	CNOW	This function reads the motor-torque current command value of the actuator in 1mA.	0		6.4.17
03	Deviation reading	DEVI	This function reads the deviation over a 1ms period in pulses.	0		6.4.18
03	Total power on time reading	STIM	Reads the accumulated time from the controller power- on in units of 1ms.	0		6.4.19
03	Special input port input signal status reading (Sensor input status)	SIPM	 This function reads the following 8 statuses: (1) Command pulse NP (2) Command pulse PP (3) Mode switch (4) Belt breakage sensor (5) Home check sensor (6) Overtravel sensor (7) Creep sensor (8) Limit sensor 	0		6.4.20
03	Zone output signal reading	ZONS	 This function reads the following 6 statuses: (1) LS2 (PIO pattern solenoid valve mode (3-point type)) (2) LS1 (PIO pattern solenoid valve mode (3-point type)) (3) LS0 (PIO pattern solenoid valve mode (3-point type)) (4) Position zone (5) Zone 2 (6) Zone 1 	0		6.4.21
03	Positioning completed position number reading Exected program number register reading	POSS	This function reads the following next statuses: Complete position number bit 256 to 1 Exected program number bit 32 to1	0		6.4.22

FC	Function	Symbol	Function Summary	Combination with PIO	Broad- cast	Reference
03	Controller status signal reading 5	SSSE	 This function reads the following 2 statuses: (1) Cold start level alarm occurred/not occurred (2) RTC (calendar) function used/not used (ERC3, PCON-CA/CFA/CB/CFB, ACON-CA/CB and DCON-CA/CB only) 	0		6.4.23
03	Current load reading	FBFC	The current measurement on the load cell is read in units of 0.01N.	0		6.4.24
03	Press program status register reading	PPST	 This function reads the following 12 statuses: (1) Waiting (2) While in returning operation (3) While in depression operation (4) Pressurize during the stop (5) While in pressurizing operation (6) While in probing operation (7) While in approaching the operation (8) Program home return during the movement (9) Program alarm (10) Program finished in normal condition (11) While in excecuting program (12) Program home position 	0		6.4.28
03	Press program judgement status register	PPJD	 This function reads the following 6 statuses: (1) Load judgement NG (2) Load judgement OK (3) Position (distance) judgement NG (4) Position (distance) judgement OK (5) Total judgement NG (6) Total judgement OK 	0		6.4.29
05	Safety speed enable/disable switching	SFTY	This function issues a command to enable/disable the safety speed.		0	6.5.2
05	Servo ON/OFF	SON	This function issues a command to turn the servo ON/OFF.		0	6.5.3
05	Alarm reset	ALRS	This function issues a command to reset alarms/cancel the remaining travel.		0	6.5.4
05	Brake forced release	BKRL	This function issues a command to forcibly release the brake.		0	6.5.5
05	Pause	STP	This function issues a pause command.		0	6.5.6
05	Home return	HOME	This function issues a home return operation command.		0	6.5.7
05	Positioning start command	CSTR	This signal starts a position number specified movement.		0	6.5.8
05	Jog/inch switching	JISL	This function switches between the jogging mode and the inching mode		0	6.5.9
05	Teaching mode command	MOD	This function switches between the normal mode and the teaching mode		0	6.5.10
05	Position data load command	TEAC	This function issues a current position load command in the teaching mode.		0	6.5.11
05	Jog+ command	JOG+	This function issues a jogging/inching command in the direction opposite home.		0	6.5.12
05	Jog- command	JOG-	This function issues a jogging/inching command in the direction of home.		0	6.5.13
05	Start positions 0 to 7 (ST0 to ST7) movement command	ST0 to ST7	This function specifies position numbers effective only in the solenoid valve mode. The actuator can be operated with this command alone.		0	6.5.14
05	Load cell calibration command	CLBR	Calibrate the load cell.		0	6.5.15

6.3 List of ASCII Mode Queries

FC	Function	Symbol	Function Summary	Combination with PIO	Broad- cast	Reference
05	PIO/Modbus switching setting	PMSL	This function issues a command to enable/disable PIO external command signals.		0	6.5.16
05	Deceleration stop	STOP	This function can decelerate the actuator to a stop.		0	6.5.17
05	Axis operation permission	ENMV	Setting can be made whether to permit the operation of the connected axes.		0	6.5.18
05	Program home return movement	PHOM	Movement is made to the program home position set in each press program.		0	6.5.19
05	Search stop	SSTP	It can be stopped after search operation is complete.		0	6.5.20
05	Program compulsoly finish	FPST	It compulsoly finishes the press program.		0	6.5.21
05	Program executed	PSTR	Press program execute it.		0	6.5.22
06	Direct writing of control information write	-	Change (write) the content of the controller's register.		0	6.6.1
10	Numerical value movement command	None	This function can be used to send the "target position", "positioning band", "speed", "acceleration/deceleration", "push", and "control setting" in a single message to operate the actuator. Normal movement, relative movement and push-motion operation are supported.		0	6.7.1
10	Writing position data table	None	This function can be used to change all data of the specified position number for the specified axis.		0	6.7.2

Note 1 For exception response, refer to [7.1 Responses at Errors (Exception Responses)].

6.4 Data and Status Reading (Function code 03)

6.4.1 Reading Consecutive Multiple Registers

[1] Function

These registers read the contents of registers in a slave. This function is not supported in broadcast communication.

[2] Start address list

With Controllers, the sizes of send/receive buffers are set to 256 bytes, respectively. Accordingly, a maximum of 123 registers worth of data consisting of 247 bytes (one register uses two bytes), which is 9 bytes (header + slave address + function code + error check + trailer) of 256 bytes, can be queried in the ASCII mode. In other words, all of the data listed below can be queried in a single communication. It is also available to refer to multiple registers of the addresses in a row at one time of sending and receiving.

Address [H]	Symbol	Name	Sign	Register size	Byte
0500	ALA0	Alarm detail code		1	2
0501	ALA0	Alarm address		1	2
0502	-	Always "0"	-	1	2
0503	ALC0	Alarm code		1	2
0504, 0505	ALT0	Alarm occurrence time		2	4
	PCMD	Target position	0	2	4
	INP	Positioning band	0	2	4
1000 to 3FFF	VCMD	Speed command		2	4
(Note)	ZNMP	Individual zone boundary +	0	2	4
Assignment is	ZNLP	Individual zone boundary -	0	2	4
made in order	ACMD	Acceleration command		1	2
from small	DCMD	Deceleration command		1	2
position numbers.	PPOW	Push-current limiting value		1	2
	LPOW	Load current threshold		1	2
	CTLF	Control flag specification		1	2
8400, 8401	TLMC	Total moving count (Note 1)		2	4
8402, 8403	ODOM	Total moving distance (Note 1)		2	4
841E, 841F	TIMN	Current time (SCON-CA/CAL/CB only)		2	4
8420, 8421	Current time			2	4
8422, 8423	TIMN	N Current time (ACON-CA/CB, DCON-CA/CB only)		2	4
842A, 842B	TFAN	Total FAN driving time (SCON-CAL, SCON-CB (400W or more) only)		2	4
842E, 842F	TFAN	Total FAN driving time (PCON-CFA/CFB only)		2	4

Address [H]	Symbol	Name	Sign	Register size	Byte
9000, 9001	PNOW	Current position monitor	0	2	4
9002	ALMC	Currently generated alarm code query		1	2
9003	DIPM	Input port query		1	2
9004	DOPM	Output port monitor query		1	2
9005	DSS1	Device status query 1		1	2
9006	DSS2	Device status query 2		1	2
9007	DSSE	Expansion device status query		1	2
9008, 9009	STAT	System status query		2	4
900A, 900B	VNOW	Current speed monitor	0	2	4
900C, 900D	CNOW	Current ampere monitor		2	4
900E, 900F	DEVI	Deviation monitor		2	4
9010, 9011	STIM	System timer query		2	4
9012	SIPM	Special input port query		1	2
9013	ZONS	Zone status query		1	2
9014	POSS	Positioning complete position No. status query		1	2
9015	SSSE	Exected program No. register (Servo Press)		1	2
901E	FBFC	Expansion system status register	0	2	4
9020	OLLV	Current load data monitor		1	2
9022	ALMP	Overload level monitor		1	2
9023	ALMP	Press program alarm code		1	2
9024	PPST	Alarm generated press program No.		1	2
9025	PPJD	Pres program status register		1	2

Note 1 PCON-CA/CFA/CB/CFB/CYB/PLB/POB, ACON-CA/CB/CYB/PLB/POB, DCON-CA/CB/CYB

/PLB/POB, SCON-CA/CAL/CB, ERC3 only

[3] Query format

In a query message, specify the address of the register from which to start reading data, and number of bytes in registers to be read.

1 register (1 address) = 2 bytes = 16-bit data

Field	Number of characters	ASCII mode fixed character string	Remarks
Header		4_3 -	
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	'0', '3'	Register reading code
Start address [H]	4	Arbitrary	Refer to [6.4.1 [2] Start address list].
Number of registers [H]	4	Arbitrary	Refer to [6.4.1 [2] Start address list].
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	8	-	

[4] Response format

A response message contains 16 bits of data per register.

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4_3 -	
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	-	Number of specified registers in a query format \times 2
Data 1 [H]	4	-	
Data 2 [H]	4	-	
Data 3 [H]	4	-	
Data 4 [H]	4	-	
:	:	-	
:	:	-	
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	Up to 256	-	

[5] Query sample

A sample query that queries addresses 9000_{H} to 9009_{H} of a controller of axis No. 0 is shown below.

Query

01039000000A62 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>(</i> , <i>)</i>	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', '0'	39303030
Number of registers [H]	'0', '0', '0', 'A'	30303041
Error check [H]	'6', '2' (in accordance with LRC calculation)	3632
Trailer	'CR', 'LF'	0D0A

Response

01031400000000000B80162002000800031C7000800111C [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]		
Header	(<u>,</u>)	3A		
Slave address [H]	'0', '1'	3031		
Function code [H]	'0', '3'	3033		
Number of data bytes [H]	'1', '4' (20 bytes = 10 registers)	3134		
Data 1 [H]	'0', '0', '0', '0', '0', '0', '0', '0',	3030303030303030		
Data 2 [H]	ʻ0', ʻ0', ʻ0', ʻ0'	30303030		
Data 3 [H]	'B', '8', '0', '1'	42383031		
Data 4 [H]	'6', '2', '0', '0'	36323030		
Data 5 [H]	'2', '0', '0', '0'	32303030		
Data 6 [H]	'8', '0', '0', '0'	38303030		
Data 7 [H]	'3', '1', 'C', '7'	33314337		
Data 8 [H]	'0', '0', '0', '8', '0', '0', '1', '1'	3030303830303131		
Error check [H]	'1', 'C' (in accordance with LRC calculation)	3143		
Trailer	'CR', 'LF'	0D0A		

Note If the response example is simply an example and will vary depending on various conditions.

6.4.2 Alarm Detail Description Reading (ALA0, ALC0, ALT0)

[1] Function

This bit reads the alarm codes, alarm detail codes and alarm occurrence time that lately occurred. When any alarm is not issued, it is " 0_H ". For details, refer to [4.3.2 [1] to [3]].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰ <u>،</u>	
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	'0', '5', '0', '0'	Alarm detail code
Number of registers [H]	4	'0', '0', '0', '6'	Reading addresses 0500_{H} to 0505_{H}
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Field Number of characters		Remarks		
Header	1	(,)			
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H)		
Function code [H]	2	'0', '3'	Register reading code		
Number of data bytes [H]	2	'0', 'C'	12 bytes = Reading 6 registers		
Data 1 [H]	4	Alarm detail code	Alarm detail code (0500 _H) [HEX]		
Data 2 [H]	4	Alarm address	Alarm address (0501 _H) [HEX]		
Data 3 [H]	8	Alarm code	Alarm code [HEX]		
Data 4 [H]	8	Alarm occurrence time (Note 1)	Alarm occurrence time [HEX]		
Error check [H]	2	LRC calculation result			
Trailer	2	'CR', 'LF'			
Total number of bytes	35	-			

Note 1 The contents of display should differ between the models equipped with RTC (calendar feature) and those not equipped with it.

(1) When parameter is "Enable" in RTC equipped with RTC: Displays alarm occurrence time

(2) When parameter is "Disable" in RTC equipped with RTC: Displays time [ms] passed after the power is turned on

(3) For models not quipped with RTC: Displays time [ms] passed after the power is turned on

[4] Query sample

Here shows an example to read content of the alarm (Address 0500_{H} to 0505_{H}) occurred last in controller on Axis No. 0.

Query

010305000006F1 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	· · ·	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'0', '5', '0', '0'	30353030
Number of registers [H]	'0', '0', '0', '6'	30303036
Error check [H]	['] F', '1' (in accordance with LRC calculation)	4631
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01030C0000FFFF000000E82AD1D07B24 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>(</i> , <i>)</i>	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	ʻ0', ʻC' (12 bytes = 6 registers)	3043
Data 1 [H]	'0', '0', '0', '0'	30303030
Data 2 [H]	'F', 'F', 'F', 'F'	46464646
Data 3 [H]	'0', '0', '0', '0', '0', '0', '8'	3030303030304538
Data 4 [H]	'2', 'A', 'D', '1', 'D', '0', '7', 'B'	3241443144303742
Error check [H]	'2', '4' (in accordance with LRC calculation)	3234
Trailer	'CR', 'LF'	0D0A

Alarm detail code: 0000_H ···· No detail code

Alarm address: FFFF_H ······ Disable (no detail code)

Alarm code: 00E8_H = 0E8 (Encoder AB phase break error)^(Note 1)

Alarm occurrence time: 2AD1D07B_H (conversion) \Rightarrow 2022/10/06 17:44:42

(Refer to [4.3.2 [4]] for how to convert the alarm occurred time)

Note If the response example is simply an example and will vary depending on various conditions.

Note 1 For the detail of an alarm code, refer to the [instruction manual of the each controller].

6.4.3 Position Data Description Reading (PCMD, INP, VCMD, ZNMP, ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF)

[1] Function

This reads the value set in the indicated position number.

[2] Start address list

The buffer size of sending and receiving of RC Controller is 256 bytes for each. Accordingly, a maximum of 123 registers' worth of data consisting of 256 bytes (one register uses two bytes), except 9 bytes (header + slave address + function code + error check + trailer) of the above 247 bytes, can be queried in the ASCII mode. In other words, all of the data listed below can be queried in a single communication.

It is also available to refer to multiple registers of the addresses in a row at one time of sending and receiving.

Address [H]	Top Address of Each Position Number [H]	Offset from Top Address [H]	Symbol	Registers name	Sign	Register size	Byte	Unit
1000	Top Address =	+0	PCMD	Target position	0	2	4	0.01mm
to 3FFF	1000 _H + (16× position No.)	+2	INP	Positioning band	0	2	4	0.01mm
	,	+4	VCMD	Speed command		2	4	0.01mm/s
		+6	ZNMP	Individual zone boundary +	0	2	4	0.01mm
		+8	ZNLP	Individual zone boundary -	0	2	4	0.01mm
		+A	ACMD	Acceleration command		1	2	0.01G
		+B	DCMD	Deceleration command		1	2	0.01G
		+C	PPOW	Push-current limiting value		1	2	% (100%=FF _H)
		+D	LPOW	Load current threshold		1	2	% (100%=FF _H)
		+E	CTLF	Control flag specification		1	2	

In a query input, each address is calculated using the formula below:

1000_H + (16 × Position number) _H + Address (Offset)_H

Example: Change the speed command register for position No. 200

$$1000_{H}$$
 + (16 \times 200_D)_H + 4_H

$$= 1000_{H} + (3200_{D})_{H} + 4_{H}$$
$$= 1000_{H} + C80_{H} + 4_{H}$$

Therefore, for Position No. 200, " $1C84_H$ " should be the input value in the query start address.

Note The maximum position number varies depending on the controller model and the PIO pattern currently specified.

[3] Query format

In a query message, specify the address of the register from which to start reading data, and number of bytes in registers to be read.

1 register (1 address) = 2 bytes = 16-bit data

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	٤ <u>.</u> ۶	
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	Arbitrary	Refer to [6.4.1 [2] Start address list].
Number of registers [H]	4	Arbitrary	
Error check [H]	2	LRC calculation result	
Trailer	2	CR/LF	
Total number of bytes	17	-	

[4] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4. 9 -	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	-	Total number of bytes of registers specified in the query
Data 1 [H]	4	-	
Data 2 [H]	4	-	
Data 3 [H]	4	-	
Data 4 [H]	4	-	
:	:	-	
:	:	-	
Error check [H]	2	LRC calculation result	
Trailer		CR/LF	
Total number of bytes	Up to 256		

[5] Query sample

Shown below is an example for a use referring to the "target position", "positioning band" and "Speed command" in Position No. 1 (Address 1010_H to 1015_H) on Axis No. 0 controller.

Query

010310100006D6 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(,)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'1', '0', '1', '0'	31303130
Number of registers [H]	'0', '0', '0', '6' (6 registers)	30303036
Error check [H]	'D', '6'(in accordance with LRC calculation)	4436
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01030C00007D000001F4000003A98E8 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	ʻ0', ʻ3'	3033
Number of data bytes [H]	'0', 'C'(12 bytes = 6 registers)	3043
Data 1 [H]	'0', '0', '0', '0', '0', '7', 'D', '0' (target position query)	3030303030374430
Data 2 [H]	'0', '0', '0', '0', '1', 'F', '4', '0' (positioning band query)	3030303031463430
Data 3 [H]	ʻ0', '0', '0', '0', '3', 'A', '9', '8' (speed command query)	3030303033413938
Error check [H]	'E', '8' (in accordance with LRC calculation)	4538
Trailer	'CR', 'LF'	0D0A

Target position "7D0_H" \rightarrow Convert into decimal number \rightarrow 2000_D × [unit 0.01mm] = 20.00mm

Positioning band "1F40_H" \rightarrow Convert into decimal number \rightarrow 8000_D × [unit 0.01mm] = 80.00mm

Speed command " $3A98_H$ " \rightarrow Convert into decimal number $\rightarrow 15000_D \times [unit 0.01mm] = 150.00mm$

Note If the response example is simply an example and will vary depending on various conditions.

6.4.4 Total moving count Reading (TLMC)

[1] Function

This bit reads the total moving count. For details, refer to [4.3.2 [8]].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header		4. 7 -	
Slave address [H]	1	Arbitrary	Axis number + 1 (01_H to 10_H)
Function code [H]	1	'0', '3'	Register reading code
Start address [H]	2	'8', '4', '0', '0'	Total moving count
Number of registers [H]	2	'0', '0', '0', '2'	Reading addresses 8400_H to 8401_H
Error check [H]	2	LRC calculation result	
Trailer		'CR', 'LF'	
Total number of bytes	8	-	

[3] Response format

A response message contains 16 bits of data per register.

Field	Number of characters	ASCII mode fixed character string	Remarks
Header		í. ?	
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	'0', '3'	Register reading code
Number of data bytes [H]	1	'0', '4'	4 bytes = Reading 2 registers
Data 1 [H]	2	Total moving count	Total moving count [HEX] (most significant digit)
Data 2 [H]	2	Total moving count	Total moving count [HEX] (least significant digit)
Error check [H]	2	LRC calculation result	
Trailer		'CR', 'LF'	
Total number of bytes	9	-	

Here shows an example to read the total moving count (Address 8400_{H} to 8401_{H}) of an actuator connected to the controller on Axis No. 0.

Query

01 03 8400 0002 76 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u> </u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'8', '4', '0', '0'	38343030
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	ʻ7', ʻ6' (in accordance with LRC calculation)	3736
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 04 0000 021F D7 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4'	3034
Data 1 [H]	ʻ0', ʻ0', ʻ0', ʻ0'	30303030
Data 2 [H]	'0', '2', '1', 'F'	30323146
Error check [H]	['] D', '7' (in accordance with LRC calculation)	4337
Trailer	'CR', 'LF'	0D0A

The Total moving distance is $21F_{H} \rightarrow$ Convert into decimal number \rightarrow 543times

6.4.5 Total moving distance Reading (ODOM) (in 1mm units)

[1] Function

The total drive distance (Address 8402_{H} to 8403_{H}) of an actuator connected to the controller on Axis No. 0 is to be read in the unit of 1m.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(_) _	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	'8', '4', '0', '2'	Total moving distance
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 8402_{H} to 8403_{H}
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4. ?	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '4'	4 bytes = Reading 2 registers
Data 1 [H]	4	Total moving distance	Total moving distance [HEX] (most significant digit)
Data 2 [H]	4	Total moving distance	Total moving distance [HEX] (least significant digit)
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19	-	

Here shows an example to read the total moving distance (Address 8402_{H} to 8403_{H}) of an actuator connected to the controller on Axis No. 0.

Query

01 03 8402 0002 74 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>(</i> , <i>)</i>	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'8', '4', '0', '2'	38343032
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	ʻ7', ʻ4' (in accordance with LRC calculation)	3734
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 04 0000 409E 1A [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4'	3034
Data 1 [H]	ʻ0', ʻ0', ʻ0', ʻ0'	30303030
Data 2 [H]	'4', '0', '9', 'E'	34303945
Error check [H]	ʻ1', ʻA (in accordance with LRC calculation)	3141
Trailer	'CR', 'LF'	0D0A

The total moving distance is $409E_{\text{H}} \rightarrow \text{Convert}$ into decimal number $\rightarrow 16542\text{m}$

6.4.6 Current Time Reading (TIMN)

[1] Function

This bit reads the current time.

* PCON-CA/CFA/CB/CFB/CBP, ACON-CA/CB, DCON-CA/CB and SCON-CA/CAL/CB (including servo pressing type) only.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4. 9 -	
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	SCON-CA/CAL/CB: '8', '4', '1', 'E' PCON-CA/CFA/CB/CFB/CBP: '8', '4', '2', '0' ACON-CA/CB, DCON-CA/CB: '8', '4', '2', '2'	841E: SCON-CA/CAL/CB 8420: PCON-CA/CFA/CB/CFB/CBP 8422: ACON-CA/CB, DCON- CA/CB
Number of registers [H]	4	'0', '0', '0', '2'	Reading 2 registers form start address
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰. ۲	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '4'	4 bytes = Reading 2 registers
Data [H]	8	Current time	Refer to [6.4.6 [4]] for conversion at time.
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19	-	

[4] Conversion of Read Data into Time

The read data output the current time by the setting on the controller.

- (1) For the models that are equipped with the calendar function (RTC), when RTC is set effective, it shows the time of alarm issuance.
- (2) When RTC is set ineffective or for the models that is not equipped with RTC, it shows the passed time [s] since the power to the controller is turned on.
- (1) How current time is calculated

The data of current time shows the seconds passed from the origin time (00hr:00min:00sec 1January2000).

Passed second from the origin time is expressed with S, passed minute with M, passed hour with H, passed day with D and passed year with Y, and the calculation is conducted with a formula as shown below:

- 1) Passed second S should be converted into a decimal number.
- 2) M, H, D, Y and L should be figured out based on S.

M = S/60 (decimal fraction to be rounded down)

- H = M/60 (decimal fraction to be rounded down)
- D = H/24 (decimal fraction to be rounded down)

Y = D/365.25 (decimal fraction to be rounded down)

- L (Leap year) = Y/4 (decimal fraction to be rounded up)
- 3) SA, MA, HA and DA should be figured out.

Assuming the second of time is SA, minute is MA, hour is HA, passed day in this year is DA and year is YA, the time can be calculated with a formula as shown below:

- SA = Remainder of S/60
- MA = Remainder of M/60
- HA = Remainder of H/24

 $DA = D - (Y \times 365 + L)$

* Year and day can be figured out by subtracting the number of days in each month from DA.

YA = Y + 2000 (A.D.)

Example of Calculation: When current time data is output as $2AD2F1CE_H$

- 1) Convert into decimal number: S = 2AD2F1CE_H \Rightarrow 718467534
- 2) Calculate M, H, D, Y and L.
 - M = 718467534/60 = 11974458 (decimal fraction to be rounded down)
 - H = 11974458/60 = 199574 (decimal fraction to be rounded down)
 - D = 199574/24 = 8315 (decimal fraction to be rounded down)

Y = 8315/365.25 = 22 (decimal fraction to be rounded down)

L = 22/4 = 6 (decimal fraction to be rounded up)

- 3) SA, MA, HA and DA should be figured out.
 - SA = Remainder of 718467534/60 = 54
 - MA = Remainder of 11974458/60 = 18
 - HA = Remainder of 199574/24 = 14
 - $\mathsf{DA} = 8315 (22 \times 365 + 6)$
 - = 279 (279 days has passed in 2022 year and the time of alarm issuance is on the day 280.)

Year and day = 280 - {31 (Jan) - 29 (Feb) - 31 (Mar) - 30 (Apr) - 31 (May)

- 30 (Jun) - 31 (Jul) - 31 (Aug) - 30 (Sep)}

= 7 (As the number reduced for October would make a negative number, the read out date should be October 7)

YA = 22 + 2000 = 2022

As figured out with the calculation above, the current time is 14:18:54 7Oct2022.

(2) How to Calculate Current time

Example of Calculation: When current time data is output as E1B8B_H

SA = Remainder of 9024555/60 = 15

MA = Remainder of 15409/60 = 49

Convert into decimal number: $E1B8B_H \Rightarrow 924555$

Therefore, it means 924555s (15min. 49sec. 256h) has passed since the power was turned on.

A sample query that reads the current Time of PCON-CA (Address 8420_{H} to 8421_{H}) with axis No. 0 is shown below.

Query

01 03 8420 0002 56 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>د</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'8', '4', '2', '0'	38343230
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	ʻ5', ʻ6' (in accordance with LRC calculation)	3536
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 04 172C 1B8B 56 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u> </u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4'	3034
Data [H]	'1', '7', '2', 'C', '1', 'B', '8', 'B'	3137324331423842
Error check [H]	ʻ5', ʻ6' (in accordance with LRC calculation)	3536
Trailer	'CR', 'LF'	0D0A

Current time is 14h:43m:23s April 26, 2012.

6.4.7 Total FAN Driving Time Reading (TFAN)

[1] Function

This bit reads the Total FAN driving time (in 1s unit)

* PCON-CFA/CFB, SCON-CAL, SCON-CB (400W or more) only.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4. 7	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	SCON-CAL, SCON-CB (400W or more) '8', '4', '2', 'A' PCON-CFA/CFB: '8', '4', '2', 'E'	842A: SCON-CAL, SCON-CB (400W or more) 842E: PCON-CFA/CFB
Number of registers [H]	4	'0', '0', '0', '2'	Reading 2 registers form start address
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u> </u>)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '4'	4 bytes = Reading 2 registers
Data 1 [H]	4	Total FAN driving time	Total FAN driving time [HEX] (most significant digit)
Data 2 [H]	4	Total FAN driving time	Total FAN driving time [HEX] (least significant digit)
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19	-	

A sample query that reads the total FAN driving time (Address $842E_{H}$ to $842F_{H}$) of a controller with axis No. 0 (PCON-CFB) is shown below.

Query

01 03 842E 0002 48 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>i</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'8', '4', '2', 'E'	38343245
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'4', '8' (in accordance with LRC calculation)	3438
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 04 0000 02AF 47 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u> </u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4'	3034
Data 1 [H]	'O', 'O', 'O', 'O'	30303030
Data 2 [H]	'0', '2', 'A', 'F'	30324146
Error check [H]	'4', '7' (in accordance with LRC calculation)	3437
Trailer	'CR', 'LF'	0D0A

The total FAN driving time is "000002AF_H" \rightarrow Convert into decimal number \rightarrow 687s

6.4.8 Current Position Reading (PNOW)

[1] Function

This query reads the current in units of 0.01mm. The sign is effective.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4. 7 -	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	'9', '0', '0', '0'	Current position monitor
Number of registers [H]	4	'0', '0', '0', '2'	Reading 2 registers form start address
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4. ? -	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '4'	4 bytes = Reading 2 registers
Data 1 [H]	4	In accordance with the current value	Current position data [HEX] (most significant digit)
Data 2 [H]	4	In accordance with the current value	Current position data [HEX] (least significant digit)
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19	-	

A sample query that reads the current position (Address 9000_{H} to 9001_{H}) in a controller of axis No. 0 is shown below.

Query

01 03 9000 0002 6A [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>(</i> , <i>)</i>	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', '0'	39303030
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	ʻ6', ʻA' (in accordance with LRC calculation)	3641
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 04 0000 1388 5D [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4' (4 bytes = 2 registers)	3034
Data 1 [H]	ʻ0', ʻ0', ʻ0', ʻ0'	30303030
Data 2 [H]	'1', '3', '8', '8'	31333838
Error check [H]	ʻ5', ʻD' (in accordance with LRC calculation)	3544
Trailer	'CR', 'LF'	0D0A

The current position is "1388_H" \rightarrow Convert into decimal number \rightarrow 5000s

6.4.9 Currently Generated Alarm Code Reading (ALMC)

[1] Function

This query reads the code indicating the normal status or alarm status (cold start level,

operation cancellation level and message level) of the controller.

In the normal status, " 00_H " is stored.

For details on alarm codes, refer to the [Instruction manual of each controller].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	() 	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	ʻ9', ʻ0', ʻ0', ʻ2'	Currently generated alarm code
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9002 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u> </u>)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register
Data [H]	4	Alarm code	Alarm code [HEX]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15	-	

A sample query that reads the alarm code (Address 9002_H) of a controller with axis No. 0 is shown below.

Query

01 03 9002 0001 69 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>د</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', '2'	39303032
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	ʻ6', ʻ9' (in accordance with LRC calculation)	3639
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 02 00E8 12 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u> </u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data [H]	'0', '0', 'E', '8'	30304538
Error check [H]	'1', '2' (in accordance with LRC calculation)	3132
Trailer	'CR', 'LF'	0D0A

Alarm code: $00E8_H = 0E8$ (A-, B-Phase Line Breakage Error) (Note 1)

Note If the response example is simply an example and will vary depending on various conditions.

Note 1 For details on alarm codes, refer to the [Instruction manual of each controller].

6.4.10 I/O Port Input Signal Status Reading (DIPM)

[1] Function

This query reads the port input value of the RC controller regardless of the PIO pattern. The status of the port to which a signal is currently input as recognized by the RC controller is read.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u> </u>) _	
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	'9', '0', '0', '3'	Input port monitor register
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9003 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4. ?	
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register
Data [H]	4	DI input value	Port input value [HEX]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15	-	

A sample query that reads input ports (Address 9003_H) in a controller of axis No. 0 is shown below.

Query

01 03 9003 0001 68 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>i</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', '3'	39303033
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	ʻ6', ʻ8' (in accordance with LRC calculation)	3638
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 02 B801 14 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u> </u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data [H]	'B', '8', '0', '1'	42383031
Error check [H]	'1', '4' (in accordance with LRC calculation)	3134
Trailer	'CR', 'LF'	0D0A

The input port data area is B801_H \rightarrow Convert into binary number: 101110000000001_b

Bit15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	1
IN15	IN14	IN13	IN12	IN11	IN10	IN9	IN8	IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0

[5] Port assignment

For details, refer to the [instruction manual for each RC controller].

- Write the port assignment of PIO patterns to each RC controller.
- 0 indicates that response data is always "0".

		PCC	ON-C/CF/CA	A/CFA/CB/C	CFB		Other than	PCON-C/CF
			PIO pa	attern			(Pulse Tra	ain Mode)
Port	0	1	2	3	4	5	6	7
IN0	PC1	PC1	PC1	PC1	ST0	ST0	SON	SON
IN1	PC2	PC2	PC2	PC2	ST1	ST1	RES	RES
IN2	PC4	PC4	PC4	PC4	ST2	ST2	HOME	HOME
IN3	PC8	PC8	PC8	PC8	ST3	0	TL	TL
IN4	PC16	PC16	PC16	PC16	ST4	0	CSTP	CSTP
IN5	PC32	PC32	PC32	PC32	ST5	0	DCLR	DCLR
IN6	0	MODE	PC64	PC64	ST6	0	BKRL	BKRL
IN7	0	JISL	PC128	PC128	0	0	RMOD	RMOD
IN8	0	JOG+	0	PC256	0	0	0	RSTR
IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	0	0
IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	0	0
IN11	HOME	HOME	HOME	HOME	HOME	0	0	0
IN12	*STP	*STP	*STP	*STP	*STP	0	0	0
IN13	CSTR	CSTR/ PWRT	CSTR	CSTR	0	0	0	0
IN14	RES	RES	RES	RES	RES	RES	0	0
IN15	SON	SON	SON	SON	SON	SON	0	0

			P	CON-CY	В		PCC	N-PLB/P	ОВ	PCON	-PL/PO	
			PI	O patter	'n			PIO pattern			PIO pattern	
Port	0	1	2	3	4	5	6	0	1	2	0	1
IN0	PC1	ST0	ST0	ST0	ST0	1)		SON	SON		SON	SON
IN1	PC2	ST1	ST1	0	ST1	(Note	tion	RES	RES	u	TL	TL
IN2	PC4	ST2	ST2	0	ASTR		ica	HOME	HOME	catio	HOME	HOME
IN3	PC8	ST3	0	0	0	Number	ommunication (_{Note} 2)	TL	TL	ommunication (Note 2)	RES	RES/ DCLR
IN4	HOME	ST4	SON	SON	SON	ed	Ор	CSTP	CSTP		0	0
IN5	*STR	ST5	0	*STR	*STR	Selected	Serial mman	DCLR	DCLR	y Serial C Command	0	0
IN6	CSTR	ST6	0	0	0			BKRL	BKRL	/ Se	0	0
IN7	RES	RES	RES	RES	RES	A	Q D	0	RSTR		0	0
IN8 to IN15	0	0	0	0	0	0	Control	0	0	Control	0	0

(Note 1) Any number can be selected for those except for Command Position Number Signal and CSTR Signal.

Refer to [PCON-CYB/PLB/POB instruction manual (ME0353)].

(Note 2) PLB/POB is complied with the serial communication mode in the firmware version PCON (v0005) or later.

Even though the I/O port input signal status is read out in the condition of PIO Pattern 6, the values should all be 0.

		ACON	-C/CA/CB,	DCON-C/	CA/CB		Other than	ACON-C/CF
			PIO p	attern			(Pulse Tra	ain Mode)
Port	0	1	2	3	4	5	6	7
IN0	PC1	PC1	PC1	PC1	ST0	ST0	SON	SON
IN1	PC2	PC2	PC2	PC2	ST1	ST1	RES	RES
IN2	PC4	PC4	PC4	PC4	ST2	ST2	HOME	HOME
IN3	PC8	PC8	PC8	PC8	ST3	0	TL	TL
IN4	PC16	PC16	PC16	PC16	ST4	0	CSTP	CSTP
IN5	PC32	PC32	PC32	PC32	ST5	0	DCLR	DCLR
IN6	0	MODE	PC64	PC64	ST6	0	BKRL	BKRL
IN7	0	JISL	PC128	PC128	0	0	RMOD	RMOD
IN8	0	JOG+	0	PC256	0	0	0	RSTR
IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	0	0
IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	0	0
IN11	HOME	HOME	HOME	HOME	HOME	0	0	0
IN12	*STP	*STP	*STP	*STP	*STP	0	0	0
IN13	CSTR	CSTR/ PWRT	CSTR	CSTR	0	0	0	0
IN14	RES	RES	RES	RES	RES	RES	0	0
IN15	SON	SON	SON	SON	SON	SON	0	0

		ACON-CYB, DCON-CYB							CON-PLB	/POB	ACON	-PL/PO
			PIO	pattern				PIO pattern			PIO pattern	
Port	0	1	2	3	4	5	6	0	1	2	0	1
IN0	PC1	ST0	ST0	ST0	ST0		_	SON	SON		SON	SON
IN1	PC2	ST1	ST1	0	ST1	te 1)	tion	RES	RES	tion	TL	TL
IN2	PC4	ST2	ST2	0	ASTR	- (Note	ica	HOME	HOME	ica	HOME	HOME
IN3	PC8	ST3	0	0	0	Number	ommunication (Note 2)	TL	TL	ommunication (Note 2)	RES	RES/ DCLR
IN LA		074	0.01	0.01	0.01	Nul		OOTD	OOTD		0	-
IN4	HOME	ST4	SON	SON	SON	ð	D D	CSTP	CSTP	nd D	0	0
IN5	*STR	ST5	0	*STR	*STR	cte	Serial mman	DCLR	DCLR	Serial mman	0	0
IN6	CSTR	ST6	0	0	0	Selected		BKRL	BKRL	Seria	0	0
IN7	RES	RES	RES	RES	RES	ΑS	<u> </u>	0	RSTR	δġŬ	0	0
IN8 to IN15	0	0	0	0	0	0	Control	0	0	Control	0	0

(Note 1) Any number can be selected for those except for Command Position Number Signal and CSTR Signal.

For details, refer to [ACON-CYB/PLB/POB and DCON-CYB/PLB/POB instruction manual (ME0354)].

(Note 2) PLB/POB is complied with the serial communication mode in the firmware version ACON (v0002) and DCON (v0001) or later.

Even though the I/O port input signal status is read out in the condition of PIO Pattern 6, the values should all be 0.

		;	SCON-C/C	A/CAL/CI	SCON	-CA/CB	SCON-C	C/CA/CB		
				PIO p	attern				(Pulse Tra	ain Mode)
Port	0	1	2	3	4	5	6	7	0	1 ^(Note 1)
IN0	PC1	PC1	PC1	PC1	ST0	ST0	PC1	ST0	SON	SON
IN1	PC2	PC2	PC2	PC2	ST1	ST1	PC2	ST1	RES	RES
IN2	PC4	PC4	PC4	PC4	ST2	ST2	PC4	ST2	HOME	HOME
IN3	PC8	PC8	PC8	PC8	ST3	0	PC8	ST3	TL	TL
IN4	PC16	PC16	PC16	PC16	ST4	0	PC16	ST4	CSTP	CSTP
IN5	PC32	PC32	PC32	PC32	ST5	0	0	0	DCLR	DCLR
IN6	0	MODE	PC64	PC64	ST6	0	0	0	BKRL	BKRL
IN7	0	JISL	PC128	PC128	0	0	0	0	RMOD	RMOD
IN8	0	JOG+	0	PC256	0	0	CLBR	CLBR	0	RSTR
IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	BKRL	BKRL	0	0
IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	0	0
IN11	HOME	HOME	HOME	HOME	HOME	0	HOME	HOME	0	0
IN12	*STP	*STP	*STP	*STP	*STP	0	*STP	*STP	0	0
IN13	CSTR	CSTR/ PWRT	CSTR	CSTR	0	0	CSTR	0	0	0
IN14	RES	RES	RES	RES	RES	RES	RES	RES	0	0
IN15	SON	SON	SON	SON	SON	SON	SON	SON	0	0

(Note 1) This mode is not equipped in SCON-C/CA.

	SCON-CB		ERC2 (P	IO Type)		ERC	3 (PIO Ty	/pe)
	Servo press		PIO p	attern	Р	IO patter	n	
Port	-	0	1	2	3	0	1	2
IN0	PC1	PC1	ST0	PC1	PC1	PC1	ST0	PC1
IN1	PC2	PC2	ST1	PC2	PC2	PC2	ST1	PC2
IN2	PC4	PC4	ST2	PC4	PC4	PC4	ST2	PC4
IN3	PC8	HOME	0	PC8	PC8	HOME	0	PC8
IN4	PC16	CSTR	RES	CSTR	CSTR	CSTR	RES	CSTR
IN5	PC32	*STP	*STP	*STP	*STP	*STP	*STP	*STP
IN6	PSTR	0	0	0	0	0	0	0
IN7	RHOM	0	0	0	0	0	0	0
IN8	ENMV	0	0	0	0	0	0	0
IN9	FPST	0	0	0	0	0	0	0
IN10	CLBR	0	0	0	0	0	0	0
IN11	BKRL	0	0	0	0	0	0	0
IN12	RMOD	0	0	0	0	0	0	0
IN13	HOME	0	0	0	0	0	0	0
IN14	RES	0	0	0	0	0	0	0
IN15	SON	0	0	0	0	0	0	0

6.4.11 I/O Port Output Signal Status Reading (DOPM)

[1] Function

This query reads the port output value of the RC controller regardless of the PIO pattern.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	() 	
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	ʻ9', ʻ0', ʻ0', ʻ4'	Output port monitor register
Number of registers [H]	4	'0', '0', '0', '1'	Reading addresses 9004 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(_) _	
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register
Data [H]	4	DO output value	Port output value [HEX]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15	-	

A sample query that output port (Address 9004_H) of a controller of axis No. 0 is shown below.

Query

01 03 9004 0001 67 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	ʻ9', ʻ0', ʻ0', ʻ4'	39303034
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'6', '7' (in accordance with LRC calculation)	3637
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 02 7400 86 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>د</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2 (2 bytes = 1 register)	3032
Data [H]	'7', '4', '0', '0'	37343030
Error check [H]	'8', '6' (in accordance with LRC calculation)	3836
Trailer	'CR', 'LF'	0D0A

The input port data area is $7400_{\text{H}} \rightarrow \text{Convert}$ into binary number: 011101000000000_b

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
OUT15	OUT14	OUT13	OUT12	OUT11	OUT10	OUT9	OUT8	OUT7	OUT6.	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0

[5] Port assignment

For details, refer to the [Instruction manual for each RC controller].

- Write the port assignment of PIO patterns to each RC controller.
- 0 indicates that response data is always "0".

		PCC	N-C/CF/CA	/CFA/CB/	CFB		Other than	PCON-C/CF
			PIO pa	attern			(Pulse Tra	ain Mode)
Port	0	1	2	3	4	5	6	7
OUT0	PM1	PM1	PM1	PM1	PE0	LS0	PWR	PWR
OUT1	PM2	PM2	PM2	PM2	PE1	LS1	SV	SV
OUT2	PM4	PM4	PM4	PM4	PE2	LS2	INP	INP
OUT3	PM8	PM8	PM8	PM8	PE3	0	HEND	HEND
OUT4	PM16	PM16	PM16	PM16	PE4	0	TLR	TLR
OUT5	PM32	PM32	PM32	PM32	PE5	0	*ALM	*ALM
OUT6	MOVE	MOVE	PM64	PM64	PE6	0	*EMGS	*EMGS
OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	RMDS	RMDS
OUT8	PZONE/ ZONE2	PZONE/ ZONE1	PZONE/ ZONE1	PM256	PZONE/ ZONE2	PZONE/ ZONE2	ALM1	ALM1
OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	ALM2
OUT10	HEND	HEND	HEND	HEND	HEND	HEND	ALM4	ALM4
OUT11	PEND	PEND/ WEND	PEND	PEND	PEND	0	ALM8	ALM8
OUT12	SV	SV	SV	SV	SV	SV	*ALML	*ALML
OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	0	REND
OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	ZONE1	ZONE1
OUT15 (Note 1)	LOAD/ TRQS/ *ALML	*ALML	LOAD/ TRQS/ *ALML	LOAD/ TRQS/ *ALML	LOAD/ TRQS/ *ALML	*ALML	ZONE2	ZONE2

(Note 1) Signals available for output may differ depending on models.

For details, refer to the [Instruction manual of each controller].

			PCO	PCON	-PLB/PO	В	PCON	-PL/PO					
			PIO p	pattern				PIO	PIO pattern			PIO pattern	
Port	0	1	2	3	4	5	6	0	1	2	0	1	
OUT0	PM1	PE0	LS0	LS0/ PE0	LS0/ PE0	2)	(Note 3)	PWR	PWR	(Note 3)	SV	SV	
OUT1	PM2	PE1	LS1	LS1/ PE1	LS1/ PE1	ir (Note	Command	SV	SV	Command	INP	INP/ TLR	
OUT2	PM4	PE2	LS2	PSFL	PSFL	Number		INP	INP		HEND	HEND	
OUT3	PM8	PE3	HEND	HEND	HEND	Nur	ation	HEND	HEND	ation	*ALM	*ALM	
OUT4	HEND	PE4	SV	SV	SV		Inica	TLR	TLR	Inica	0	0	
OUT5	PZONE/ ZONE1	PE5	PZONE/ ZONE1	PZONE/ ZONE1	PZONE/ ZONE1	Selected	Communication	ZONE 1	ZONE 1	Communication	0	0	
OUT6	PEND	PE6	*ALML	*ALML	*ALML	A S	Serial (*ALML	REND	Serial (0	0	
OUT7	*ALM	*ALM	*ALM	*ALM	*ALM			*ALM	*ALM		0	0	
OUT8 ~ OUT15	0	0	0	0	0	0	Control by	0	0	Control by	0	0	

(Note 2) Any number can be selected for those except for Complete Position Number Signal and PEND Signal. For details, refer to [PCON-CYB/PLB/POB instruction manual (ME0353)].

(Note 3) PLB/POB is complied with the serial communication mode in the firmware version PCON (v0005) or later.

Even though the I/O port output signal status is read out in the condition of PIO Pattern 6, the values should all be 0.

		ACON	-C/CA/CB,	DCON-C/C	CA/CB		Other than	ACON-C/CF
			PIO pa	attern			(Pulse Tra	ain Mode)
Port	0	1	2	3	4	5	6	7
OUT0	PM1	PM1	PM1	PM1	PE0	LS0	PWR	PWR
OUT1	PM2	PM2	PM2	PM2	PE1	LS1	SV	SV
OUT2	PM4	PM4	PM4	PM4	PE2	LS2	INP	INP
OUT3	PM8	PM8	PM8	PM8	PE3	0	HEND	HEND
OUT4	PM16	PM16	PM16	PM16	PE4	0	TLR	TLR
OUT5	PM32	PM32	PM32	PM32	PE5	0	*ALM	*ALM
OUT6	MOVE	MOVE	PM64	PM64	PE6	0	*EMGS	*EMGS
OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	RMDS	RMDS
OUT8	PZONE/ ZONE2	PZONE/ ZONE1	PZONE/ ZONE1	PM256	PZONE/ ZONE2	PZONE/ ZONE2	ALM1	ALM1
OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	ALM2
OUT10	HEND	HEND	HEND	HEND	HEND	HEND	ALM4	ALM4
OUT11	PEND	PEND/ WEND	PEND	PEND	PEND	0	ALM8	ALM8
OUT12	SV	SV	SV	SV	SV	SV	*ALML	*ALML
OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	0	REND
OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	ZONE1	ZONE1
OUT15 (Note 1)	*BALM /*ALML	*BALM /*ALML	*BALM /*ALML	*BALM /*ALML	*BALM /*ALML	*BALM /*ALML	ZONE2	ZONE2

(Note 1) The available output should differ depending on models.

For details, refer to the [Instruction manual of each controller].

			ACON-C	B, DCON	ACON,	DCON-PL	B/POB	ACON	-PL/PO				
	PIO pattern								PIO pattern			PIO pattern	
Port	0	1	2	3	4	5	6	0	1	2	0	1	
OUT0	PM1	PE0	LS0	LS0/ PE0	LS0/ PE0	2)	(Note 3)	PWR	PWR	Note 3)	SV	SV	
OUT1	PM2	PE1	LS1	LS1/ PE1	LS1/ PE1	er (Note	Command ⁽	SV	SV	Command ^(Note 3)	INP	INP/ TLR	
OUT2	PM4	PE2	LS2	PSFL	PSFL	Number		INP	INP		HEND	HEND	
OUT3	PM8	PE3	HEND	HEND	HEND	Nui	tion	HEND	HEND	tion	*ALM	*ALM	
OUT4	HEND	PE4	SV	SV	SV	ed	nica	TLR	TLR	nica	0	0	
OUT5	PZONE/ ZONE1	PE5	PZONE/ ZONE1	PZONE/ ZONE1	PZONE/ ZONE1	Selected	Communication	ZONE 1	ZONE 1	Commu	0	0	
OUT6	PEND	PE6	*ALML	*ALML	*ALML	A	erial	*ALML	REND	erial	0	0	
OUT7	*ALM	*ALM	*ALM	*ALM	*ALM		S	*ALM	*ALM	y Se	0	0	
OUT8 to OUT15	0	0	0	0	0	0	Control by	0	0	Control by Serial Communication	0	0	

(Note 2) Any number can be selected for those except for Complete Position Number Signal and PEND Signal. For details, refer to [ACON-CYB/PLB/POB and DCON-CYB/PLB/POB instruction manual (ME0353)].

(Note 3) PLB/POB is complied with the serial communication mode in the firmware version ACON (v0002) and DCON (v0001) or later.

Even though the I/O port output signal status is read out in the condition of PIO Pattern 6, the values should all be 0.

		ç	SCON-C/C	A/CAL/CE	3		SCON-	CA/CB	SCON-C	/CA/CB	
				PIO pa	attern				(Pulse Train Mode)		
Port	0	1	2	3	4	5	6	7	0	1 ^(Note 1)	
OUT0	PM1	PM1	PM1	PM1	PE0	LS0	PM1	PE0	PWR	PWR	
OUT1	PM2	PM2	PM2	PM2	PE1	LS1	PM2	PE1	SV	SV	
OUT2	PM4	PM4	PM4	PM4	PE2	LS2	PM4	PE2	INP	INP	
OUT3	PM8	PM8	PM8	PM8	PE3	0	PM8	PE3	HEND	HEND	
OUT4	PM16	PM16	PM16	PM16	PE4	0	PM16	PE4	TLR	TLR	
OUT5	PM32	PM32	PM32	PM32	PE5	0	TRQS	TRQS	*ALM	*ALM	
OUT6	MOVE	MOVE	PM64	PM64	PE6	0	LOAD	LOAD	*EMGS	*EMGS	
OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	CEND	CEND	RMDS	RMDS	
OUT8	PZONE/	PZONE/	PZONE/	PM256	PZONE/	PZONE/	PZONE/	PZONE/	ALM1	ALM1	
0018	ZONE2	ZONE1	ZONE1	FIVIZO	ZONE2	ZONE2	ZONE1	ZONE1	ALIVII	ALIVIT	
OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	ALM2	
OUT10	HEND	HEND	HEND	HEND	HEND	HEND	HEND	HEND	ALM4	ALM4	
OUT11	PEND	PEND/ WEND	PEND	PEND	PEND	0	PEND	PEND	ALM8	ALM8	
OUT12	SV	SV	SV	SV	SV	SV	SV	SV	*OVLW/ *ALML ^(Note 2)	*OVLW/ *ALML	
OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	0	REND	
OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	ZONE1	ZONE1	
OUT15	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM	ZONE2	ZONE2	

(Note 1) This mode is not equipped in SCON-C/CA.

(Note 2) SCON-C is not equipped with *OVLW and *ALML outputs.

	SCON-CB		ERC2 (P	IO Type)		ER	C3 (PIO T	ype)
	Servo press		PIO p	attern	PIO pattern			
Port	-	0	1	2	3	0	1	2
OUT0	PCMP	PEND	PE0	PEND	PEND	PEND	PE0	PEND
OUT1	PRUN	HEND	PE1	HEND	HEND	HEND	PE1	HEND
OUT2	PORG	ZONE	PE2	ZONE	ZONE	ZONE 1	PE2	PZONE/ ZONE1
OUT3	APRC	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM
OUT4	SERC	0	0	0	0	0	0	0
OUT5	PRSS	0	0	0	0	0	0	0
OUT6	PSTP	0	0	0	0	0	0	0
OUT7	MPHM	0	0	0	0	0	0	0
OUT8	JDOK	0	0	0	0	0	0	0
OUT9	JDNG	0	0	0	0	0	0	0
OUT10	CEND	0	0	0	0	0	0	0
OUT11	RMDS	0	0	0	0	0	0	0
OUT12	HEND	0	0	0	0	0	0	0
OUT13	SV	0	0	0	0	0	0	0
OUT14	*ALM	0	0	0	0	0	0	0
OUT15	*ALML	0	0	0	0	0	0	0

6.4.12 Controller Status Signal Reading 1 (DSS1)

[1] Function

This bit reads the internal status of the controller.

For status details, refer to [4.3.2 [12] Data of device status register 1].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u> </u>)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	ʻ9', ʻ0', ʻ0', ʻ5'	Device status register 1
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9005 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u> </u>)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register
Data [H]	4	Status 1	Status 1 [HEX]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15	-	

A sample query that reads the device status (Address 9005_H) of a controller with axis No. 0 is shown below.

Query

01 03 9005 0001 66 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', '5'	39303035
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'6', '6' (in accordance with LRC calculation)	3636
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 02 3088 42 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	ʻ0', ʻ2' (2 bytes = 1 register)	3032
Data [H]	'3', '0', '8', '8'	33303838
Error check [H]	'4', '2' (in accordance with LRC calculation)	3432
Trailer	'CR', 'LF'	0D0A

Contents of device status register 1:

 $3088_{\text{H}} \rightarrow \text{Convert}$ into binary number: 0011000010001000_{\text{b}}

Bit 15	Bit 14	Bit 13					Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EMGS	SFTY	PWR	SV	PSFL	ALMH	ALML	ABER	BKRL	-	STP	HEND	PEND	CEND	CLBS	-
0	0	1	1	0	0	0	0	1	0	0	0	1	0	0	0

6.4.13 Controller Status Signal Reading 2 (DSS2)

[1] Function

This bit reads the internal status of the controller.

For status details, refer to [4.3.2 [13] Data of device status register 2].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks		
Header	1	(<u> </u>)			
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)		
Function code [H]	2	'0', '3'	Register reading code		
Start address [H]	4	'9', '0', '0', '6'	Device status register 2		
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9006 _H		
Error check [H]	2	LRC calculation result			
Trailer	2	'CR', 'LF'			
Total number of bytes	17	-			

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks		
Header	1	(<u> </u>)			
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)		
Function code [H]	2	'0', '3'	Register reading code		
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register		
Data [H]	4	Status 2	Status 2 [HEX]		
Error check [H]	2	LRC calculation result			
Trailer	2	'CR', 'LF'			
Total number of bytes	15	-			

A sample query that reads the device status (Address 9006_{H}) of a controller with axis No. 0 is shown below.

Query

01 03 9006 0001 65 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]			
Header	· · ·	3A			
Slave address [H]	'0', '1'	3031			
Function code [H]	'0', '3'	3033			
Start address [H]	'9', '0', '0', '6'	39303036			
Number of registers [H]	'0', '0', '0', '1'	30303031			
Error check [H]	'6', '5' (in accordance with LRC calculation)	3635			
Trailer	'CR', 'LF'	0D0A			

The response to the query is as follows.

Response

01 03 02 8000 7A [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]			
Header	(<u>,</u>)	3A			
Slave address [H]	'0', '1'	3031			
Function code [H]	'0', '3'	3033			
Number of data bytes [H]	ʻ0', ʻ2' (2 bytes = 1 register)	3032			
Data [H]	'8', '0', '0', '0'	38303030			
Error check [H]	ʻ7', ʻA' (in accordance with LRC calculation)	3741			
Trailer	'CR', 'LF'	0D0A			

Contents of device status register 2:

 $8000_H \rightarrow Convert$ into binary number: 10000000000000_b

				000011			, 10 m 10 m 2					00			
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ENBS	-	LOAD	TRQS	MODS	TEAC	JOG+	JOG-	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

6.4.14 Controller Status Signal Reading 3 (DSSE)

[1] Function

This bit reads internal status (expansion device) of the controller. For status details, refer to [4.3.2 [14] Data of expansion device status register].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks		
Header	1	í.)			
Slave address [H]	2	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)		
Function code [H]	2	'0', '3'	Register reading code		
Start address [H]	4	'9', '0', '0', '7'	Expansion device status register		
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9007 _H		
Error check [H]	2	LRC calculation result			
Trailer	2	'CR', 'LF'			
Total number of bytes	17	-			

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks		
Header	1	۶. ۶ -			
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)		
Function code [H]	2	'0', '3'	Register reading code		
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register		
Data [H]	4	Expansion status	Expansion status [HEX]		
Error check [H]	2	LRC calculation result			
Trailer	2	'CR', 'LF'			
Total number of bytes	15	-			

A sample query that reads the expansion device status (Address 9007_H) of a controller of axis No. 0 is shown below.

Query

01 03 9007 0001 64 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]			
Header	<i>د</i> . ,	3A			
Slave address [H]	'0', '1'	3031			
Function code [H]	'0', '3'	3033			
Start address [H]	'9', '0', '0', '7'	39303037			
Number of registers [H]	'0', '0', '0', '1'	30303031			
Error check [H]	'6', '4' (in accordance with LRC calculation)	3634			
Trailer	'CR', 'LF'	0D0A			

The response to the query is as follows.

Response

01 03 02 33C7 00 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]			
Header	·. ,	3A			
Slave address [H]	'0', '1'	3031			
Function code [H]	'0', '3'	3033			
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032			
Data [H]	'3', '3', 'C', '7'	33334337			
Error check [H]	ʻ0', ʻ0' (in accordance with LRC calculation)	3030			
Trailer	'CR', 'LF'	0D0A			

Contents of expansion device status register 2:

 $33C2_{\text{H}} \rightarrow Convert$ into binary number: $0011001111000010_{\text{b}}$

												- 5			
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EMGP	MPUV	RMDS	-	GHMS	PUSH	PSNS	PMSS	-	-	MOVE	-	-	-	-	-
0	0	1	1	0	0	1	1	1	1	0	0	0	0	1	0

6.4.15 Controller Status Signal Reading 4 (STAT)

[1] Function

This bit reads the internal operation status of the controller. For status details, refer to [4.3.2 [15] Data of system status registers].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks		
Header	1	(.)			
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)		
Function code [H]	2	'0', '3'	Register reading code		
Start address [H]	4	ʻ9', ʻ0', ʻ0', ʻ8'	System status register		
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 9008 _H to 9009 _H		
Error check [H]	2	LRC calculation result			
Trailer	2	'CR', 'LF'			
Total number of bytes	17	-			

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u> </u>)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '4'	4 bytes = Reading 2 registers
Data [H]	8	System status	System status [HEX]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19	-	

A sample query that reads the system status (Address 9008_{H} to 9009_{H}) of a controller of axis No. 0 is shown below.

Query

01 03 9008 0002 62 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>د</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', '8'	39303038
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'6', '2' (in accordance with LRC calculation)	3632
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 04 000C 0011 DB [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u> </u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4' (4 bytes = 2 registers)	3034
Data [H]	'0', '0', '0', 'C', '0', '0', '1', '1'	3030304330303131
Error check [H]	⁽ D', 'B' (in accordance with LRC calculation)	4442
Trailer	'CR', 'LF'	0D0A

Contents of system status register:

000C 0011_H \rightarrow Convert into binary number: 000000000001100 000000000010001_b

						,									
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
BATL	-	-	-	1	-	-	-	-	1	-	-	-	-	ASOF	AEEP
0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	-	-	-	-	-	RMDS	HEND	SV	SON	MPOW
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1

6.4.16 Current Speed Reading (VNOW)

[1] Function

The monitored data of actual motor speed is read. The speed may be positive or negative depending on the moving direction of the actuator.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(.)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	'9', '0', '0', 'A'	Current speed monitor
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 900A $_{\rm H}$ to 900B $_{\rm H}$
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰. ۲	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '4'	4 bytes = Reading 2 registers
Data [H]	8	Current speed	Current speed [HEX] The unit is 0.01 mm/s.
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19	-	

A sample query that reads the current speed monitor (Address $900A_H$ to $900B_H$) of a controller of axis No. 0 is shown below.

Query

01 03 900A 0002 60 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>i</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', 'A'	39303041
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	ʻ6', ʻ0' (in accordance with LRC calculation)	3630
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 04 0000 07C8 D6 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u> </u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4'	3034
Data [H]	'0', '0', '0', '0', '0', '7' 'C', '8'	3030303030374338
Error check [H]	'D', '6'	In accordance with CRC calculation
Trailer	'CR', 'LF'	

Example 1 The current speed is " $000007C8_H$ " \rightarrow Convert into decimal number \rightarrow 1992 (× 0.01mm/s) Therefore, the current speed monitor is 19.92mm/s

Example 2 When the current speed reading is "FFFFF070_H" (moving in the direction opposite to the example above)

 $FFFFFFF_{H}$ - $FFFF070_{H}$ + 1 (make sure to add 1) = $F90_{H}$

Convert into decimal number \rightarrow 3984 (× 0.01mm/s)

Therefore, the current speed is 39.84mm/s

6.4.17 Current Ampere Reading (CNOW)

[1] Function

This bit reads the monitor data of the motor current (torque current command value). The unit is [mA].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(,)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	'9', '0', '0', 'C'	Current ampere monitor
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses $900C_H$ to $900D_H$
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u>)</u>	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '4'	4 bytes = Reading 2 registers
Data [H]	8	Motor current monitor	Motor current monitor [HEX] The unit is [mA]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19	-	

A sample query that read the current ampere monitor (Address $900C_H$) of a controller of axis No. 0 is shown below.

Query

01 03 900C 0002 5E [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', 'C'	39303043
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	^{'5', 'E'} (in accordance with LRC calculation)	3545
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 04 0000 01C8 2F [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	·. ·	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4' (4 bytes = 2 registers)	3034
Data [H]	'0', '0', '0', '0', '0', '1', 'C', '8'	3030303030314338
Error check [H]	'2', 'F' (in accordance with LRC calculation)	3246
Trailer	'CR', 'LF'	0D0A

The monitor value is "000001C8_H" \rightarrow Convert into decimal number \rightarrow 456

Therefore, the current ampere monitor value is 456mA.

6.4.18 Deviation Reading (DEVI)

[1] Function

This bit reads the deviation over a 1ms period between the position command value and the feedback value (actual position).

The unit is [pulse].

The number of pulses per one motor revolution in mechanical angle varies depending on the encoder used.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(.)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	'9', '0', '0', 'E'	Deviation monitor
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses $900E_{H}$ to $900F_{H}$
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۶ <u>.</u> ۶	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '4'	4 bytes = Reading 2 registers
Data [H]	8	Deviation monitor	Deviation monitor [HEX] The unit is [pulse]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19	-	

A sample query that reads the deviation monitor (Address $900E_H$ to $900F_H$) of a controller of axis No. 0 is shown below.

Query

01 03 900E 0002 5C [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]			
Header	<i>(</i> , <i>)</i>	3A			
Slave address [H]	'0', '1'	3031			
Function code [H]	'0', '3'	3033			
Start address [H]	'9', '0', '0', 'E'	39303045			
Number of registers [H]	'0', '0', '0', '2'	30303032			
Error check [H]	'5', 'C' (in accordance with LRC calculation)	3543			
Trailer	'CR', 'LF'	0D0A			

The response to the query is as follows.

Response

01 03 04 0000 0083 75 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]			
Header	(<u>,</u>)	3A			
Slave address [H]	'0', '1'	3031			
Function code [H]	'0', '3'	3033			
Number of data bytes [H]	'0', '4' (4 bytes = 2 registers)	3034			
Data [H]	'0', '0', '0', '0', '0', '0', '3', '3'	3030303030303833			
Error check [H]	ʻ7', ʻ5' (in accordance with LRC calculation)	3735			
Trailer	'CR', 'LF'	0D0A			

The monitor value is "00000083H" \rightarrow Convert into decimal number $\rightarrow 131$

Therefore, the deviation over a 1ms period between the position command value and the feedback value (actual position) is 131pulses.

6.4.19 Total Time after Power On Reading (STIM)

[1] Function

This bit reads the total time since the controller power was turned on.

The unit is [ms].

The timer value is not cleared by software reset.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks					
Header	1	4. 7						
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)					
Function code [H]	2	'0', '3'	Register reading code					
Start address [H]	4	ʻ9', ʻ0', ʻ1', ʻ0'	System timer					
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 9010_H to 9011_H					
Error check [H]	2	LRC calculation result						
Trailer	2	'CR', 'LF'						
Total number of bytes	17	-						

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks					
Header	1	۰. ۲						
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)					
Function code [H]	2	ʻ0', ʻ3'	Register reading code					
Number of data bytes [H]	2	'0', '4'	4 bytes = Reading 2 registers					
Data [H]	8	System timer	System timer [HEX] The unit is [ms]					
Error check [H]	2	LRC calculation result						
Trailer	2	'CR', 'LF'						
Total number of bytes	19	-						

A sample query that reads the system timer value (Address 9010_{H} to 9011_{H}) of a controller of axis No. 0 is shown below.

Query

01 03 9010 0002 5A [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]			
Header	<i>i</i> . ,	3A			
Slave address [H]	'0', '1'	3031			
Function code [H]	'0', '3'	3033			
Start address [H]	ʻ9', ʻ0', ʻ1', ʻ0'	39303130			
Number of registers [H]	'0', '0', '0', '2'	30303032			
Error check [H]	'5', 'A' (in accordance with LRC calculation)	3541			
Trailer	'CR', 'LF'	0D0A			

The response to the query is as follows.

Response

01 03 04 0238 C094 6A [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]		
Header	<i>i</i> . ,	3A		
Slave address [H]	'0', '1'	3031		
Function code [H]	'0', '3'	3033		
Number of data bytes [H]	ʻ0', ʻ4 (4 bytes = 2 registers)	3034		
Data [H]	'0', '2', '3', '8', 'C', '0', '9', '4'	3032333843303934		
Error check [H]	'6', 'A' (in accordance with LRC calculation)	3641		
Trailer	'CR', 'LF'	0D0A		

The system timer is "0238 C094H" \rightarrow Convert into decimal number \rightarrow 37273748ms

The total time since the controller power was turned on is 10.353 hours.

6.4.20 Special Input Port Input Signal Status Reading (SIPM)

[1] Function

This bit reads the status of input ports other than the normal input port. For status details, refer to [4.3.2 [16] Data of special input port monitor registers].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks					
Header	1	(<u> </u>)						
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)					
Function code [H]	2	'0', '3'	Register reading code					
Start address [H]	4	ʻ9', ʻ0', ʻ1', ʻ2'	Special input port monitor					
Number of registers [H]	4	'0', '0', '0', '1'	Reading addresses 9012 _H					
Error check [H]	2	LRC calculation result						
Trailer	2	'CR', 'LF'						
Total number of bytes	17	-						

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks					
Header	1	(<u> </u>)						
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)					
Function code [H]	2	'0', '3'	Register reading code					
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register					
Data [H]	4	Special input port monitor	Refer to the list in [4.3.2 [16]]					
Error check [H]	2	LRC calculation result						
Trailer	2	'CR', 'LF'						
Total number of bytes	15	-						

A sample query that reads the special input port (Address 9012_H) of a controller of axis No. 0 is shown below.

Query

01 03 9012 0001 59 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]			
Header	<i>د</i> . ,	3A			
Slave address [H]	'0', '1'	3031			
Function code [H]	'0', '3'	3033			
Start address [H]	ʻ9', ʻ0', ʻ1', ʻ2'	39303132			
Number of registers [H]	'0', '0', '0', '1'	30303031			
Error check [H]	'5', '9' (in accordance with LRC calculation)	3539			
Trailer	'CR', 'LF'	0D0A			

The response to the query is as follows.

Response

01 03 02 0300 F7 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]			
Header	(<u> ;</u>	ЗA			
Slave address [H]	'0', '1'	3031			
Function code [H]	'0', '3'	3033			
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032			
Data [H]	'0', '3', '0', '0'	30333030			
Error check [H]	'F', '7' (in accordance with LRC calculation)	4637			
Trailer	'CR', 'LF'	0D0A			

Contents of special input port monitor:

$0300_{\rm H} \rightarrow \text{Convert}$ into binary number: $000000110000000_{\rm b}$

					,					-					
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	NP	-	PP	-	-	-	MDSW	-	-	-	BLCT	HMCK	OT	CREP	LS
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0

6.4.21 Zone Output Signal Status Reading (ZONS)

[1] Function

This bit reads the status of zone.

For status details, refer to [4.3.2 [17] Data of zone status registers].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u> </u>)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	ʻ9', ʻ0', ʻ1', ʻ3'	Zone status query
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9013 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u> </u>)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register
Data [H]	4	Zone status	Refer to [4.3.2 [17]]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15	-	

A sample query that reads the zone output signal (Address 9013_{H}) of a controller of axis No. 0 is shown below.

Query

01 03 9013 0001 58 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(,)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '1', '3'	39303133
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	[·] 5', '8' (in accordance with LRC calculation)	3538
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 02 0000 FA [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	ʻ0', ʻ2' (2 bytes = 1 register)	3032
Data [H]	'0', '0', '0', '0'	30303030
Error check [H]	[·] F', 'A' (in accordance with LRC calculation)	4641
Trailer	'CR', 'LF'	0D0A

Contents of zone output signal monitor:

 $0003_H \rightarrow Convert$ into binary number: 000000000000000_b

						,				-					
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	LS2	LS1	LS0	-	-	-	ZP	-	-	-	-	-	-	Z2	Z1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

6.4.22 Positioning Completed Position Number Reading (POSS) Exected Program Number Register (Servo Press Type) (POSS)

[1] Function

This bit reads the position complete number or exected program number. For status details, refer to [4.3.2 [18] Position number status register / Exected program number registers • For SCON Servo Press Type].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۶ <u>.</u> ۶	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	ʻ9', ʻ0', ʻ1', ʻ4'	Position number / Exected program number status
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9014 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks		
Header	1	(_) _			
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)		
Function code [H]	2	'0', '3'	Register reading code		
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register		
Data [H]	4	Position number / Exected program number status	Refer to the list in [4.3.2 [18]]		
Error check [H]	2	LRC calculation result			
Trailer	2	'CR', 'LF'			
Total number of bytes	15	-			

A sample query that reads the positioning completed position (Address 9014_{H}) of a controller of axis No. 0 is shown below.

Query

01 03 9014 0001 57 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>i</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	ʻ9', ʻ0', ʻ1', ʻ4'	39303134
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'5', '7' (in accordance with LRC calculation)	3537
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 02 0003 FA [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	·. ·	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data [H]	'0', '0', '0', '3'	30303033
Error check [H]	'F', 'A' (in accordance with LRC calculation)	4641
Trailer	'CR', 'LF'	0D0A

Contents of positioning completed position:

 $0003_H \rightarrow Convert$ into binary number: 000000000000011_b

					-		,									
E	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	-	-	-	-	-	-	PM512	PM256	PM128	PM64	PM32	PM16	PM8	PM4	PM2	PM1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

6.4.23 Controller Status Signal Reading 5 (SSSE)

[1] Function

This query reads the internal operation status of the controller. For status details, refer to [4.3.2 [19] Data of expansion system status register].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(.)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	ʻ9', ʻ0', ʻ1', ʻ5'	Expansion system status register
Number of registers [H]	1	'0', '0', '0', '1'	Reading addresses 9015 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	14	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks		
Header	1	۰ <u>،</u>			
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)		
Function code [H]	2	'0', '3'	Register reading code		
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register		
Data [H]	4	Expansion system status	Refer to the list in [4.3.2 [19]]		
Error check [H]	2	LRC calculation result			
Trailer	2	'CR', 'LF'			
Total number of bytes	15	-			

A sample query that reads the expansion system status (Address 9015_H) of a controller of axis No. 0 is shown below.

Query

01 03 9015 0001 56 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>i.</i> ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '1', '5'	39303135
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	ʻ5', ʻ6' (in accordance with LRC calculation)	3536
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 02 0100 F9 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u> </u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2'	3032
Data [H]	'0', '1', '0', '0'	30313030
Error check [H]	'F', '9' (in accordance with LRC calculation)	4639
Trailer	'CR', 'LF'	0D0A

Contents of expansion system status register:

 $0100_H \rightarrow Convert into binary number: 000000010000000_b$

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	ALMC	-	-	RTC	-	-	-	-	-	-	-	-
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

6.4.24 Current Load Reading...SCON-CA/CB, PCON-CBP only

[1] Function

The monitored data of load cell measurement (push force) is read. The unit is 0.01N.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u>)</u>	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	'9', '0', '1', 'E'	Load monitor
Number of registers [H]	4	'0', '0', '0', '2'	Reading address 901E $_{\rm H}$ to 901F $_{\rm H}$
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰. ۲	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '4'	4 bytes = Reading 2 registers
Data [H]	8	Position number status	Current push force [N] Unit: 0.01 N
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19	-	

A sample query that reads the load cell current measurement (Address $901E_{H}$ to $901F_{H}$) on the load cell connected to controller axis 0.

Query

01 03 900A 0002 4C [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>د</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '1', 'E'	39393145
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'4', 'C' (in accordance with LRC calculation)	3443
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 04 0000 03E4 11 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(,)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4' (4 bytes = 2 registers)	3034
Data [H]	'O', 'O', 'O', 'O'	30303030
Error check [H]	'0', '3', 'E', '4'	30334534
Trailer	'1', '1' (in accordance with LRC calculation)	3131

Example 1) The current measurement on the load cell is

 $000003E4_{H} \to Convert \ into \ decimal \ number \to 996 \ (\times \ 0.01N) \ \to \ 9.96N$ The current push force is 9.96N

Example 2) If the current measurement reading on the load cell is "FFFFF35_H" (tensile state ^(Note 1)), FFFFFFF_H-FFFFF35_H + 1 ^(*1) \rightarrow Convert into decimal number \rightarrow 203 (× 0.01N) \rightarrow 2.03 Therefore, the current tensile force ^(Note 1) is 2.03N.

Note 1 The pulling operation is applicable only for the pulse pressing

*1 As it is a complement of 2, make sure to add "1".

6.4.25 Overload Level Monitor Reading (OLLV)...SCON-CA/CAL/CB Only

[1] Function

Current load level to the motor is read in ratio.

The unit is 1%.

For status details, refer to [4.3.2 [20] Overload level monitors].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۶ <u>.</u> ۶	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	ʻ9', ʻ0', ʻ2', ʻ0'	Overload level monitor
Number of registers [H]	4	'0', '0', '0', '2'	Reading address 9020_{H} to 9021_{H}
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۶ <u>.</u> ۶	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '4'	4 bytes = Reading 2 registers
Data [H]	8	Overload level	Unit: 1%
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19	-	

A sample query that reads the overload level (Address 9020_{H} to 9021_{H}) on the actuator connected to controller axis No. 0 is shown below.

Query

01 03 9020 0002 4A [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(,)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	ʻ9', ʻ0', ʻ2', ʻ0'	39303230
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'4', 'A' (in accordance with LRC calculation)	3441
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 04 0000 0046 B2 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]	
Header	·. ,	3A	
Slave address [H]	'0', '1'	3031	
Function code [H]	'0', '3'	3033	
Number of data bytes [H]	'0', '4' (4 bytes = 2 registers)	3034	
Data [H]	'0', '0', '0', '0', '0', '0', '4', '6'	3030303030303436	
Error check [H]	'B', '2' (in accordance with LRC calculation)	4232	
Trailer	'CR', 'LF' 0D0A		

Example 1) The current overload level is

 $0000046_{H} \rightarrow Convert into decimal number \rightarrow 70$

The current overload level is 70%.

6.4.26 Press Program Alarm Code Reading (ALMP)...Servo Press Type Only

[1] Function

Codes to show the program condition or alarm status are read.

 00_{H} is output in the normal condition.

For alarm code details, refer to the [instruction manual of servo press type controller]. Also, for the register details, refer to [4.3.2 [21] Press program alarm codes].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۲ <u>.</u> ۶ -	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	'9', '0', '2', '2'	Press program alarm codes
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9022 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4. ? -	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register
Data [H]	4	Alarm code	Alarm code [HEX]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15	-	

Here shows an example to read an alarm code (Address 9022_H) of a pressing program occurred in the controller on Axis No. 0.

Query

01 03 9022 0001 49 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(,)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '2', '2'	39303232
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'4', '9' (in accordance with LRC calculation)	3439
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 02 0003 F7 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data [H]	'0', '0', '0', '3'	30303033
Error check [H]	[·] F', '7' (in accordance with LRC calculation)	4637
Trailer	'CR', 'LF'	0D0A

Current generated alarm code is 0003_H

 $0003_{\text{H}} \rightarrow$ It is the Press program alarm codes 03 "Pogram startup at axis operation".

Check in [Troubleshooting pages in Servo-Pressing Feature Instruction Manual (ME0345) for SCON-CB Controller] for the details of the pressing program alarm codes.

6.4.27 Alarm Generated Press Program No. Reading (ALMP)...Servo Press Type Only

[1] Function

The press program number that an alarm is issued is read.

 00_{H} is output in the normal condition.

For the register details, refer to [4.3.2 [22] Alarm generated press program No.].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks	
Header	1	4. ?		
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H)	
Function code [H]	2	'0', '3'	Register reading code	
Start address [H]	4	ʻ9', ʻ0', ʻ2', ʻ3'	Alarm generated program No.	
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9023 _H	
Error check [H]	2	LRC calculation result		
Trailer	2	'CR', 'LF'		
Total number of bytes	17	-		

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks	
Header	1	4. ?		
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H)	
Function code [H]	2	'0', '3'	Register reading code	
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register	
Data [H]	4	Program No.	Alarm generated program No. [HEX]	
Error check [H]	2	LRC calculation result		
Trailer	2	'CR', 'LF'		
Total number of bytes	15	-		

Here shows an example to read the pressing program number occurred in the pressing program alarm (Address 9023_{H}) in the controller on Axis No. 0.

Query

01 03 9023 0001 48 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>د</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	ʻ9', ʻ0', ʻ2', ʻ3'	39303233
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'4', '8' (in accordance with LRC calculation)	3438
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 02 00 05 F5[CR][LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u> ;</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data [H]	'0', '0', '0', '5'	30303035
Error check [H]	'F', '5' (in accordance with LRC calculation)	4635
Trailer	'CR', 'LF'	0D0A

The pressing program number occurred in the pressing program alarm is $0005_{\text{H}} \rightarrow \text{No. 5}$

6.4.28 Press Program Status Register Reading (PPST)...Servo Press Type Only

[1] Function

Internal operation condition in the press program is read. For the register details, refer to [4.3.2 [23] Press program status registers].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u>)</u>	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	ʻ9', ʻ0', ʻ2', ʻ4'	Press program status register
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9024 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u>)</u>	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register
Data [H]	4	Press program status register	Press program status [HEX]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15	-	

A sample query that reads the press program status (Address 9024_{H}) of a controller of axis No. 0 is shown below.

Query

01 03 9024 0001 47 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>د</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '2', '4'	39303234
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'4', '7' (in accordance with LRC calculation)	3437
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 02 0102 05 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data [H]	'0', '1', '0', '2'	30313032
Error check [H]	ʻ0', ʻ5' (in accordance with LRC calculation)	3035
Trailer	'CR', 'LF'	0D0A

Contents of press program status:

0102н →	Convert into	binarv	number:	000000010000010b

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	WAIT	RTRN	DCMP	PSTP	PRSS	SERC	APRC	-	-	-	MPHM	PALM	PCMP	PRUN	PORG
0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0

6.4.29 Press Program Judgement Status Register Reading (PPJD)...Servo Press Type Only

[1] Function

Judgement condition in the press program is read.

For the register details, refer to [4.3.2 [24] Press program judgement status register].

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4. 9	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	2	'9', '0', '2', '5'	Press program judgement status register
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9025 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15	-	

[3] Response format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰. ،	
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H)
Function code [H]	2	'0', '3'	Register reading code
Number of data bytes [H]	2	'0', '2'	2 bytes = Reading 1 register
Data [H]	4	Press program judgement status register	Press program judgement status [HEX]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15	(,)	

A sample query that reads the press program judgement status (Address 9025_H) of a controller of axis No. 0 is shown below.

Query

01 03 9025 0001 46 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>i</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	ʻ9', ʻ0', ʻ2', ʻ5'	39303235
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'4', '6' (in accordance with LRC calculation)	3436
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response

01 03 02 0105 F4 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	·. ·	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data [H]	'0', '1', '0', '5'	30313035
Error check [H]	'F', '4' (in accordance with LRC calculation)	4634
Trailer	'CR', 'LF'	0D0A

Contents of press program judgement status:

 $0105_H \rightarrow Convert$ into binary number: 000000100000101_b

Bit	15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-		-	-	-	-	-	-	-	-	-	LJNG	LJOK	PJNG	PJOK	JDNG	JDOK
0)	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1

6.5 Operation Commands and Data Rewrite (Function code 05)

6.5.1 Writing to Coil

[1] Function

Change (write) the status of DO (Discrete Output) of a slave to either ON or OFF. In case of broadcast transmission, the coils at the specified address of all slaves are rewritten.

[2] Start address list

Address [H]	Symbol	Function		
0401	SFTY	Safety speed command		
0403	SON	Servo ON command		
0407	ALRS	Alarm reset command		
0408	BKRL	Brake forced-release command		
040A	STP	Pause command		
040B	HOME	Home return command		
040C	CSTR	Positioning start command		
0411	JISL	Jog/inch switching		
0414	MOD	Teaching mode command		
0415	TEAC	Position data load command		
0416	JOG+	Jog+ command		
0417	JOG-	Jog- command		
0418	ST7	Start position 7 (solenoid valve mode)		
0419	ST6	Start position 6 (solenoid valve mode)		
041A	ST5	Start position 5 (solenoid valve mode)		
041B	ST4	Start position 4 (solenoid valve mode)		
041C	ST3	Start position 3 (solenoid valve mode)		
041D	ST2	Start position 2 (solenoid valve mode)		
041E	ST1	Start position 1 (solenoid valve mode)		
041F	ST0	Start position 0 (solenoid valve mode)		
0426	CLBR	Load cell calibration command		
0427	PMSL	PIO/Modbus switching specification		
042C	STOP	Deceleration stop		
049B	ENMV	Axis operation permission		
049C	PHOM	Program home return movement		
049D	SSTP	Search stop		
049E	FPST	Program compulsoly finish		
049F	PSTR	Program start		

6.5.2 Safety Speed Enable/Disable Switching (SFTY)

[1] Function

This query "enables/disables" the speed specified by user parameter No. 35, "Safety speed." Enabling the safety speed in the MANU mode will limit the speeds of all movement commands.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰. ۲ -	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '0', '1'	Safety speed command
Changed data [H]	4	Arbitrary	Safety speed enabled: 'F', 'F', '0', '0' Safety speed disabled: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

(1) A sample query that "enables" the safety speed of a controller of axis No. 0 is shown below.

- Query (Safety speed enabled)
 - Fixed character string: 01050401FF00F6 [CR] [LF]

Conversion data: <u>3A 30 31 30 35 30 34 30 31 46 46 30 30 46 36 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>i</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', '1'	30343031
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'F', '6' (in accordance with LRC calculation)	4636
Trailer	'CR', 'LF'	0D0A

* If the change is successful, the response message will be the same as the query.

(2) A sample query that "disables" the safety speed of a controller of axis No. 0 is shown below.

Query (Safety speed disabled)
 Character string: <u>010504010000F5 [CR] [LF]</u>
 Hexadecimal: <u>3A 30 31 30 35 30 34 30 31 30 30 30 46 35 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u> </u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', '1'	30343031
Changed data [H]	'O', 'O', 'O', 'O'	46463030
Error check [H]	'F', '5' (in accordance with LRC calculation)	4635
Trailer	'CR', 'LF'	0D0A

* If the change is successful, the response message will be the same as the query.

6.5.3 Servo ON/OFF (SON)

[1] Function

Control ON/OFF of the servo.

When "Servo ON" is specified by the new data, the servo will turn ON after elapse of the manufacturer parameter "Servo ON delay time"^(*1). However, the following conditions must be satisfied:

[Condition]

- The EMG status (bit 15) in device status register 1 (9005_H) is "0".
- The major failure status (bit 10) in device status register 1 (9005_H) is "0".
- The enable status (bit 15) in device status register 2 (9006_H) is "1".
- The auto servo OFF status (bit 17) in the system status register (9008_H) is "0".
- *1 "Servo-On Latency" is a parameter for the manufacturer's adjustment.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰. ۲	
Slave address [H]	2	Arbitrary	Axis No. + 1 (01 _H to 10_H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '0', '3'	Servo ON/OFF command
Changed data [H]	4	Arbitrary	Servo ON: 'F', 'F', '0', '0' Servo OFF: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

* If a teaching tool is taken off after the servo is turned off on the teaching tool before having a communication with the host, servo-on/off with communication to the host will not be available.
 In order to recover the condition, either the power on the controller should be rebooted or the connection to SIO Port is to be disconnected while the servo is turned on.

[3] Response format

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

(1) A sample query that turns on the "servo ON" of a controller of axis No. 0 is shown below.

- Query (servo ON)
 - Character string: 01050403FF00F4 [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 30 33 46 46 30 30 46 34 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	· · ·	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', '3'	30343033
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'F', '4' (in accordance with LRC calculation)	4634
Trailer	'CR', 'LF'	0D0A

* If the change is successful, the response message will be the same as the query.

(2) A sample query that turns on the "servo OFF" of a controller of axis No. 0 is shown below.

Query (servo OFF)

Character string: 010504030000F3 [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 30 33 30 30 30 46 33 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', '3'	30343033
Changed data [H]	'O', 'O', 'O', 'O'	30303030
Error check [H]	^{(F', '3'} (in accordance with LRC calculation)	4633
Trailer	'CR', 'LF'	0D0A

* If the change is successful, the response message will be the same as the query.

6.5.4 Alarm Reset (ALRS)

[1] Function

When the alarm reset edge is turned on (the data is first set to $FF00_H$ and then changed to 0000_H), alarms will be reset.

If any alarm cause has not been removed, the same alarm will be generated again. If the alarm reset edge is turned on while the actuator is paused, the remaining travel will be cancelled. When alarms are reset, make sure to write changed data of $0000_{\rm H}$ to restore the normal status.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰. ۲	
Slave address [H]	2	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	ʻ0', ʻ5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '0', '7'	Alarm reset command
Changed data [H]	4	Arbitrary	Alarm reset command ON: 'F', 'F', '0', '0' Alarm reset command OFF: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	(_) _	

[3] Response format

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

A sample query that resets the alarms of a controller of axis No. 0 is shown below.

Query

First time (Execute alarm reset)		
Character string:	010504030000F3 [CR] [LF]	
Hexadecimal:	<u>3A 30 31 30 35 30 34 30 33 30 30 30 30 46 33 0D 0A</u>	

Second time (Restore normal status) Character string: <u>010504030000F3 [CR] [LF]</u> Hexadecimal: <u>3A 30 31 30 35 30 34 30 33 30 30 30 46 33 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', '7'	30343037
Changed data [H]	First time: 'F', 'F', '0', '0' ^(*1) Second time: '0', '0', '0', '0'	First time: 46463030 Second time: 30303030
Error check [H]	First time: 'F', '0' (in accordance with LRC calculation) Second time: 'E', 'F' (in accordance with LRC calculation)	First time: 4630 Second time: 4546
Trailer	'CR', 'LF'	0D0A

*1 Write 0000_H after resetting alarms to restore the normal status.

* If the change is successful, the response message will be the same as the query.

6.5.5 Brake Forced Release (BKRL)

[1] Function

Brake control is linked to servo ON/OFF. The brake can be forcefully released even when the servo is ON.

Caution

Once it gets unnecessary for brake compulsory release, make sure to have 0000_H written with the changed data and set it back to the normal condition. The brake would not work while the servo is off if the brake compulsory release is kept on. If it is a condition that the unit is installed vertically, a workpiece would drop and may cause a risk of injury or workpiece being damaged.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4. 7 -	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$) 00 $_{\rm H}$ when broadcast is specified
Function code [H]	2	ʻ0', ʻ5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '0', '8'	Break forced release command
Changed data [H]	4	Arbitrary	Break forced release command ON: 'F', 'F', '0', '0' Break forced release command OFF: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

A sample query that forcefully releases the break of a controller of axis No. 0 is shown below.

• Query

First time (Execute break forced release)		
Character string:	01050405FF00F2 [CR] [LF]	
Hexadecimal:	<u>3A 30 31 30 35 30 34 30 35 46 46 30 30 46 32 0D 0A</u>	

Second time (Restore normal status)

 Character string:
 :010504050000F1 [CR] [LF]

 Hexadecimal:
 3A 30 31 30 35 30 34 30 35 30 30 30 30 46 31 0D 0A

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', '8'	30343035
Changed data [H]	First time: 'F', 'F', '0', '0' ^(*1) Second time: '0', '0', '0', '0'	First time: 46463030 Second time: 30303030
Error check [H]	First time: 'F', '2' (in accordance with LRC calculation) Second time: 'F', '1' (in accordance with LRC calculation)	First time: 4632 Second time: 4631
Trailer	'CR', 'LF'	

*1 (After the brake compulsory release, write 0000_H and set it back to the normal condition.)

* If the change is successful, the response message will be the same as the query.

6.5.6 Pause (STP)

[1] Function

If the pause command is transmitted during movement, the actuator decelerates and stops. If the status is set back to normal again, the actuator resumes moving for the remaining distance.

As long as the pause command is being transmitted, all motor movement is inhibited. If the alarm reset command bit is set while the actuator is paused, the remaining travel will be cancelled.

If this bit is set during home return, the movement command will be held if the actuator has not yet reversed after contacting the mechanical end. If the actuator has already reversed after contacting the mechanical end, home return will be repeated from the beginning.

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4 <u>,</u> 9	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '0', 'A'	Pause command
Changed data [H]	4	Arbitrary	Pause command ON: 'F', 'F', '0', '0' Pause command OFF: '0', '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[2] Query format

[3] Response format

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

A sample query that pauses a controller of axis No. 0 is shown below.

• Query

First time (Pause	command)
Character string	0105040AFE00ED [CR] [LE]

Character String.	
Hexadecimal:	3A 30 31 30 35 30 34 30 41 46 46 30 30 45 44 0D 0A

Second time (Pause release)

 Character string:
 0105040A0000EC [CR] [LF]

 Hexadecimal:
 3A 30 31 30 35 30 34 30 41 30 30 30 30 45 43 0D 0A

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u> ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', 'A'	30343041
Changed data [H]	First time: 'F', 'F', '0', '0' Second time: '0', '0', '0', '0'	First time: 46463030 Second time: 30303030
Error check [H]	First time: 'E', 'D' (in accordance with LRC calculation) Second time: 'E', 'C' (in accordance with LRC calculation)	First time: 4544 Second time: 4543
Trailer	-	

If the change is successful, the response message will be the same as the query.

6.5.7 Home Return (HOME)

[1] Function

Home return operation will start if a rising edge in the home return command signal is detected (the data is first set to 0000_{H} and then changed to FF00_H). Upon home return completion, the HEND bit will become "1". This command can be input as many times as desired even after home return completion.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(,)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '0', 'B'	Home return command
Changed data [H]	4	Arbitrary	Home return command ON: 'F', 'F', '0', '0' Home return command OFF: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

* The servo must be ON before a home return command is issued.

If a teaching pendant is connected before the control establishes communication with the host, the servo is turned OFF, and then the teaching pendant is removed, the servo cannot be turned ON/OFF via commands received from omit the host.

In this case, restore the RC controller power, or make sure the SIO port connection is removed while the servo is ON.

[3] Response format

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception Responses)]) will be returned, or no response will be returned.

A sample query that executes home return operation of a controller of axis No. 0 is shown below.

Query

 First time (Set normal status)

 Character string:
 0105040B0000EB [CR] [LF]

 Hexadecimal:
 3A 30 31 30 35 30 34 30 42 30 30 30 30 45 42 0D 0A

Second time (Execute home return) Character string: <u>0105040BFF00EC [CR] [LF]</u> Hexadecimal: <u>3A 30 31 30 35 30 34 30 42 46 46 30 30 45 43 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', 'B'	30343042
Changed data [H] ^(*1)	First time: '0', '0', '0', '0' Second time: 'F', 'F', '0', '0'	First time: 30303030 Second time: 46463030
Error check [H]	First time: 'E', 'B' (in accordance with LRC calculation) Second time: 'E', 'C' (in accordance with LRC calculation)	First time: 4542 Second time: 4543
Trailer	'CR', 'LF'	0D0A

*1 Send data twice to set the edge.

* If the change is successful, the response message will be the same as the query.

6.5.8 Positioning Start Command (CSTR)

[1] Function

If the rising edge of the positioning start command is detected (the data is first set to 0000_{H} and then changed to FF00_H), the actuator will move to the position specified by the position number stored in the position number command register (POSR:0D03_H). If nothing is done after the position start command (FF00_H is read and no new data is written), a position complete will not be output even when the actuator enters the positioning band. Have 0000_{H} written with the changed data, and turn the home-return command "off".

If this command is executed when home return has never been performed after the power was turned on (when the HEND bit is "0"), the actuator will perform home return and then start moving to the target position.

* The target position, speed and all other operation parameters must be set in the position table (nonvolatile memory) of the controller in advance.

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۶ <u>.</u> ۶	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$) 00 $_{\rm H}$ when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '0', 'C'	Positioning start command
Changed data [H]	4	Arbitrary	Positioning start command ON: 'F', 'F', '0', '0' Positioning start command OFF: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[2] Query format

[3] Response format

A sample query that moves the actuator of a controller of axis No. 0 to the position specified by the position number stored in the position number command register (POSR: $0D03_{H}$) is shown below.

Query

 First time (Movement command)

 Character string:
 0105040CFF00EB [CR] [LF]

 Hexadecimal:
 3A 30 31 30 35 30 34 30 43 46 46 30 30 45 42 0D 0A

Second time (Normal status) Character string: <u>0105040C0000EA [CR] [LF]</u> Hexadecimal: <u>3A 30 31 30 35 30 34 30 43 30 30 30 45 41 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', 'C'	30343043
Changed data [H] ^(*1)	First time: 'F', 'F', '0', '0' Second time: '0', '0', '0', '0'	First time: 46463030 Second time: 30303030
Error check [H]	First time: 'E', 'B' (in accordance with LRC calculation) Second time: 'E', 'A' (in accordance with LRC calculation)	First time: 4542 Second time: 4541
Trailer	'CR', 'LF'	0D0A

*1 Once actuator operation has started, turn the position start command "off".

6.5.9 Jog/Inch Switching (JISL)

[1] Function

This bit switches between jogging and inching. When the changed data is 0000_{H} , the jog operation should be performed by operating JOG+ (Start address: 0416_{H}) / JOG- (Start address: 0417_{H}). When it is FF00_H, the inching operation should be performed by operating JOG+ (Start address: 0416_{H}) / JOG- (Start address: 0417_{H}).

If this bit switches while the actuator is jogging, the actuator will decelerate to a stop. If this bit switches while the actuator is inching, the inching movement will continue.

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰. ،	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '1', '1'	Jog/Inch Switching
Changed data [H]	4	Arbitrary	Inching operation: 'F', 'F', '0', '0' Jogging operation: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[2] Query format

[3] Response format

- [4] Query sample
- (1) A sample query that switches the operation of a controller of axis No. 0 to inching is shown below.
 - Query (Setting the inching operation)
 Character string: <u>01050411FF00E6 [CR] [LF]</u>
 Hexadecimal: <u>3A 30 31 30 35 30 34 31 31 46 46 30 30 45 36 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>)</u> •	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', '1'	30343131
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'E', '6' (in accordance with LRC calculation)	4536
Trailer	'CR', 'LF'	0D0A

* If the change is successful, the response message will be the same as the query.

(2) A sample query that switches the operation of a controller of axis No. 0 to jog is shown below.

• Query (Setting the jog operation) Character string: <u>010504110000E5 [CR] [LF]</u>

Hexadecimal: <u>3A 30 31 30 35 30 34 31 31 30 30 30 30 45 35 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u> ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', '1'	30343131
Changed data [H]	ʻ0', ʻ0', ʻ0', ʻ0'	30303030
Error check [H]	⁽ E', '5' (in accordance with LRC calculation)	4536
Trailer	'CR', 'LF'	0D0A

6.5.10 Teaching Mode Command (MOD)

[1] Function

This bit switches between the positioning mode and teaching mode.

It should be transmitted to the teaching mode once the changed data get into $FF00_H$ and should be transmitted to the positioning mode if into 0000_H . However, it has to be under the following conditions.

[Condition]

- The CSTR bit (bit 3) in details of device controller register 1 (0D00_H) is "0".
- The CSTR bit (bit 10) in details of device controller register 2 (0D01_H) is "0".
- JOG+/JOG- bits (bit 8, 9) in details of device controller register 2 (0D01_H) are both "0".
- ST# bits (bit 0 to 7) in details of device controller register 2 (0D01_H) are all "0".
- Actuators are stopped (even Push operation is not being conducted)

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4. ?	
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H) 00_H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '1', '4'	Switch between the positioning mode and the teaching mode.
Changed data [H]	4	Arbitrary	Teaching mode: 'F', 'F', '0', '0' Positioning mode: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

- [4] Query sample
- (1) A sample query that switches the operation mode of a controller of axis No. 0 to teaching mode is shown below.
 - Query (Setting the teaching mode)
 Character string: :01050414FF00E3 [CR] [LF]
 Hexadecimal: 3A 30 31 30 35 30 34 31 34 46 46 30 30 45 33 0D 0A

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>i</i> . ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', '4'	30343134
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'E', '3' (in accordance with LRC calculation)	4533
Trailer	'CR', 'LF'	0D0A

* If the change is successful, the response message will be the same as the query.

(2) A sample query that switches the operation mode of a controller of axis No. 0 to positioning mode is shown below.

Query (Setting the positioning mode)
 Character string: :010504140000E2 [CR] [LF]
 Hexadecimal: 3A 30 31 30 35 30 34 31 34 30 30 30 30 45 32 0D 0A

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	·. ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', '4'	30343134
Changed data [H]	ʻ0', ʻ0', ʻ0', ʻ0'	30303030
Error check [H]	'E', '2' (in accordance with LRC calculation)	4532
Trailer	'CR', 'LF'	0D0A

6.5.11 Position Data Load Command (TEAC)

[1] Function

The current position is acquired by writing this command (write $FF00_H$) when the teaching mode command (refer to [6.5.10]) is $FF00_H$ (teaching command).

The current position data will be written in the position number specified by the position number command register (Start address: 9800_{H}) when the aforementioned condition was detected. If other position data fields are empty, the default parameter values will be written at the same time in the empty fields other than the target position (positioning band INP, speed VCMD, acceleration/deceleration speed ACMD, and control flag CTLF).

After sending this command (write FF00_H), keep the status as is for 20ms or longer.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4 <u>,</u> 7 -	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	ʻ0', ʻ5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '1', '5'	Position data load command
Changed data [H]	4	Arbitrary	Position data load command ON: 'F', 'F', '0', '0' OFF: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

A sample query that acquires the current position when a controller of axis No. 0 is in the teaching mode is shown below.

Query

Character string: 01050415FF00E2 [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 31 35 46 46 30 30 45 32 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>.</i> ,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', '5'	30343135
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'E', '2' (in accordance with LRC calculation)	4532
Trailer	'CR', 'LF'	0D0A

* If the change is successful, the response message will be the same as the query.

Caution

• Alarm Code: 093 "Home-Return Incomplete PWRT Signal Detected" should be generated when this command (FF00_H Writing) is detected continuously for 20ms or more while in the status of the home-return incomplete.

6.5.12 Jog+ Command (JOG+)

[1] Function

The actuator performs either jog or inching operation.

- If the jog+ command (changed data FF00_H) is sent when the jog/inch switching command (refer to [6.5.9]) is set to 0000_H (set to jog), the actuator will jog in the direction opposite home. The speed and acceleration/deceleration speed conform to the "PIO jog speed" set by user parameter No. 26 and rated acceleration/deceleration speed, respectively. If the jog+ command (changed data 0000_H) is sent or the jog- command (refer to [6.5.13], changed data FF00_H) is sent while the actuator is moving jog, the actuator will decelerate to a stop.
- If the jog+ command rising edge is set (the data is first set to 0000_H and changed to FF00_H) while the jog/inch switching command (refer to [6.5.9]) is FF00_H (set to inching), the actuator will inch in the direction opposite home. The speed, travel and acceleration/deceleration speed conform to user parameter No. 26 "PIO jogging speed", user parameter No. 48 "PIO inching distance", and rated acceleration/deceleration speed, respectively.

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰. ۲	
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H) 00_H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '1', '6'	Jog+ command
Changed data [H]	4	Arbitrary	Jog+ command: 'F', 'F', '0', '0' Command OFF: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

(1) Axis No. 0 should be operated in jog in the positive direction (opposite home position).

- Query
 - Character string: 01050416FF00E1 [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 31 36 46 46 30 30 45 31 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', '6'	30343136
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	⁽ E', '1' (in accordance with LRC calculation)	4531
Trailer	'CR', 'LF'	0D0A

* If the change is successful, the response message will be the same as the query.

(2) Axis No. 0 should be operated in inching in the positive direction (opposite home position).

 Query (Inching operation: First time • Inching operation, Second time • Restore normal status)

First time: Character string:

01050416FF00E1 [CR] [LF] 3A 30 31 30 35 30 34 31 36 46 46 30 30 45 31 0D 0A

Hexadecimal: <u>34</u>

Second time: Character string: 010504160000E0 [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 31 36 30 30 30 30 45 30 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>,</u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', '6'	30343046
Changed data [H] ^(*1)	First time: 'F', 'F', '0', '0' Second time: '0', '0', '0', '0' * Restore the normal status.	First time: 46463030 Second time: 30303030
Error check [H]	First time: 'E', '1' (in accordance with LRC calculation) Second time: 'E', '0' (in accordance with LRC calculation)	First time: 4531 Second time: 4530
Trailer	'CR', 'LF'	0D0A

*1 After the actuator operation, turn Jog + Command "off".

6.5.13 Jog- Command (JOG-)

[1] Function

The actuator performs either jog or inching operation.

- If the jog- command (changed data FF00_H) is sent when the jog/inch switching command (refer to [6.5.9]) is set to 0000_H (set to jog), the actuator will jog in the direction of home. The speed and acceleration/deceleration speed conform to the "PIO jog speed" set by user parameter No. 26 and rated acceleration/deceleration speed, respectively. If the jog- command (changed data 0000_H) is sent or the jog+ command (refer to [6.5.12], changed data FF00_H) is sent while the actuator is moving, the actuator will decelerate to a stop.
- If the jog- command rising edge is set (the data is first set to 0000_H and changed to FF00_H) while the jog/inch switching command (refer to [6.5.9]) is FF00_H (set to inching), the actuator will inch in the direction opposite home. The speed, travel and acceleration/deceleration speed conform to user parameter No. 26 "PIO jogging speed", user parameter No. 48 "PIO inching distance", and rated acceleration/deceleration speed, respectively.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u> </u>)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '1', '7'	Jog- command
Changed data [H]	4	Arbitrary	Jog- command: 'F', 'F', '0', '0' Command OFF: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

(1) Axis No. 0 should be operated in jog in the negative direction (towards home position).

- Query
 - Character string: 01050417FF00E0 [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 31 37 46 46 30 30 45 30 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>)</u>	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', '7'	30343137
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'E', '0'(in accordance with LRC calculation)	4530
Trailer	'CR', 'LF'	0D0A

* If the change is successful, the response message will be the same as the query.

(2) Axis No. 0 should be operated in inching in the negative direction (towards home position).

 Query (Inching operation: First time • Inching operation, Second time • Restore normal status)

First time: Character string: Hexadecimal: 01050417FF00E0 [CR] [LF]

<u>3A 30 31 30 35 30 34 31 37 46 46 30 30 45 30 0D 0A</u>

Second time: Character string: <u>010504170000DF [CR] [LF]</u> Hexadecimal: 3A 30 31 30 35 30 34 31 37

: <u>3A 30 31 30 35 30 34 31 37 30 30 30 30 44 46 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(,)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', '7'	30343047
Changed data [H] ^(*1)	First time: 'F', 'F', '0', '0' Second time: '0', '0', '0', '0'	First time: 46463030 Second time: 30303030
Error check [H]	First time: 'E', '0' (in accordance with LRC calculation) Second time: 'D', 'F' (in accordance with LRC calculation)	First time: 4530 Second time: 4446
Trailer	'CR', 'LF'	0D0A

*1 After the actuator operation, turn Jog - Command "off".

6.5.14 Start Positions 0 to 7 (ST0 to ST7) Movement Command (Limited to solenoid valve mode)

[1] Function

The actuator moves to the specified position number position.

The movement command for start position 0 to 7 is effective only when solenoid valve mode is selected.

The movement command is sent by enabling either one of ST0 to ST7 in [6.5.14 [5] Start address] (write new value FF00_H when 0000_{H} is set).

If a position other than the valid start positions is selected, Alarm code: 085 "Moving position number error" will be generated.

Either level operation or edge operation can be selected using user parameter No. 27, "Movement command type."

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	6 <u>,</u> 7	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$) 00 $_{\rm H}$ when broadcast is specified
Function code [H]	2	ʻ0', ʻ5'	Write to a single coil DO.
Start address [H]	4	Arbitrary	Refer to [6.5.14 [5] Start address]
Changed data [H]	4	Arbitrary	*1 Operation command ON: 'F', 'F', '0', '0' Operation command OFF: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[2] Query format

*1 If user parameter No. 27, "Movement command type" is set to "level operation", the actuator decelerates to a stop by overwriting FF00_H with 0000_H.

[3] Response format

A sample query that moves a controller of axis No. 0 to start position 2 is shown below. An example of start position setting.

No.	Position [mm]	Speed [mm/s]	Acceleration [G]	Deceleration [G]
0	0.00	533.00	0.30	0.30
1	25.00	533.00	0.30	0.30
2	50.00	533.00	0.30	0.30

 Query(First time: Write 0000_H to set the edge, Second time: Movement command)
 First time: Character string: Hexadecimal:
 <u>0105041D0000D9 [CR] [LF]</u>
 <u>3A 30 31 30 35 30 34 31 44 30 30 30 30 44 39 0D 0A</u>

Second time: Character string: 0105041DFF00DA [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 31 44 46 46 30 30 44 41 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(,)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', 'D'	30343044
Changed data [H]	First time: '0', '0', '0', '0' Second time: 'F', 'F', '0', '0'	First time: 30303030 Second time: 46463030
Error check [H]	First time: 'D', '9' (in accordance with LRC calculation) Second time: 'D', 'A' (in accordance with LRC calculation)	First time: 4439 Second time: 4441
Trailer	'CR', 'LF'	0D0A

* If the change is successful, the response message will be the same as the query.

[5] Start address

Address	Symbol	Name	Function
0418	ST7	Start Position 7	Move to position 7
0419	ST6	Start Position 6	Move to position 6
041A	ST5	Start Position 5	Move to position 5
041B	ST4	Start Position 4	Move to position 4
041C	ST3	Start Position 3	Move to position 3
041D	ST2	Start Position 2	Move to position 2
041E	ST1	Start Position 1	Move to position 1
041F	ST0	Start Position 0	Move to position 0

6.5.15 Load Cell Calibration Command (CLBR)

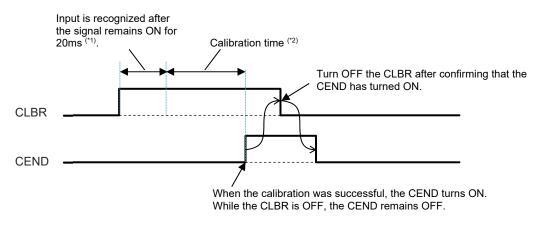
[1] Function (SCON-CA/CB Servo press connection type only)

The dedicated load cell is calibrated.

The factory setting of your load cell is that the ON status corresponds to a no-load state. If you want to define the reference state as a condition where a work part (load) is installed, calibrate the load cell.

Also calibrate the load cell in other situations as necessary (readjustment, inspection, etc.).

[2] Query format


Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰ <u>.</u> ,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	ʻ0', ʻ5'	Write to a single coil DO.
Start address [H]	2	'0', '4', '2', '6'	Load cell calibration command
Changed data [H]	2	Arbitrary	Calibration command: 'F', 'F', '0', '0' Normal operation: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response format

[4] Calibration procedure

- Stop the actuator operation. (The load cell cannot be calibrated while the actuator is performing any axis operation or push-motion operation or being paused, in which case 0E1 (load cell calibration error) alarm generates.)
- 2) Turn this signal ON and keep it ON for at least 20ms.
- 3) When the calibration is complete, the calibration complete signal (CEND of device status register 1 explained in 4.3.2 (12)) turns ON. After confirming that the CEND has turned ON, turn OFF the CLBR.

If the calibration is not completed in the normal condition, Alarm Code: 0E1 "Loadcell Calibration Error" should occur.

- *1 If the CLBR is turned OFF during this period, calibration will not be performed because the signal is not yet recognized as having been input.
- *2 If the CLBR is turned OFF during this period, an alarm will generate.

Caution

• Normal operation commands are not accepted while the CLBR is ON. Turn the command off after the calibration is completed.

Calibrate the dedicated load cell connected to controller axis 0.

- Query
 - First time: Character string:
 01050426FF00D1 [CR] [LF]

 Hexadecimal:
 3A 30 31 30 35 30 34 32 36 46 46 30 30 44 31 0D 0A

 Second time: Character string:
 010504260000D0 [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 32 36 30 30 30 30 44 30 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>)</u>	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	First time: 'F', 'F', '0', '0' Second time: '0', '0', '0', '0'	30343236
Changed data [H]	'F', 'F', '0', '0'	First time: 46463030 Second time: 30303030
Error check [H]	⁽ D', '1' (in accordance with LRC calculation)	First time: 4431 Second time: 4430
Trailer	'CR', 'LF'	0D0A

6.5.16 PIO/Modbus Switching Setting (PMSL)

[1] Function

PIO external command signals can be enabled or disabled.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰. ۲	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '2', '7'	PIO/Modbus switching setting
Changed data [H]	4	Arbitrary	*1 Enable Modus commands: 'F', 'F', '0', '0' Disable Modbus commands: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

 *1 • Enable Modbus commands (ON) (disable PIO command): FF00_H (Operation via PIO signals is not possible).

 Disable Modbus commands (OFF) (enable PIO command): 0000_H (Operation via external PIO signals is possible).

Complement

If the Modbus command is enabled, the PIO status at change is maintained.
 If the Modbus command is switched to disabled, the operation status changes according to the current PIO status. Note that even if the status of signals that operate via edge detection has been changed, edge detection is ignored.

[3] Response

A sample query that enables the Modbus command of the operation of a controller of axis No. 0 is shown below.

Query

Character string: 01050427FF00D0 [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 32 37 46 46 30 30 44 30 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u> </u>) •	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '2', '7'	30343237
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'D', '0' (in accordance with LRC calculation)	4430
Trailer	'CR', 'LF'	0D0A

* If the change is successful, the response message will be the same as the query.

Caution

- In the models equipped with operation model setting switch, it should be set to "PIO Command Valid" when it is set to AUTO mode, and "PIO Command Invalid" when set to MANU mode.
- On a non-PIO model, the default setting is "Disable PIO commands."
- If IAI's tool (teaching pendant or PC software) is connected, "Teaching modes 1, 2" and "Monitor modes 1, 2" are available as tool modes. The correspondence between these modes and PIO enable/disable specifications are as follows:
 - "Monitor modes 1, 2" \rightarrow "Enable PIO commands"
 - "Teaching modes 1, 2" → "Disable PIO commands"

6.5.17 Deceleration Stop (STOP)

[1] Function

The actuator will start decelerating to a stop when the deceleration stop command edge (write $FF00_{H}$) is turned on.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰. ۲	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$) 00 $_{\rm H}$ when broadcast is specified
Function code [H]	2	ʻ0', ʻ5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '2', 'C'	Deceleration stop setting
Changed data [H]	4	Arbitrary	Deceleration stop command: 'F', 'F', '0', '0' * The controller automatically resets the value to '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response

A sample query that decelerates to a stop of a controller of axis No. 0 is shown below.

- Query
 - Character string: 0105042CFF00CB [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 32 43 46 46 30 30 43 42 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>)</u> •	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '2', 'C'	30343243
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'C', 'B' (in accordance with LRC calculation)	4342
Trailer	'CR', 'LF'	0D0A

6.5.18 Axis operation permission (ENMV) (Servo Press Type Only)

[1] Function

The setting can be switched on permission activated/inactivated.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۶ <u>.</u> ۶	
Slave address [H]	2	Arbitrary	Axis number + 1 (01_H to 10_H) 00_H when broadcast is specified
Function code [H]	2	ʻ0', ʻ5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '9', 'B'	Axis operation permission setting
Changed data [H]	4	Arbitrary	Axis operation permission activated: F', 'F', '0', '0' Axis operation permission inactivated: 0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response

Movement of the actuator connected to Axis No. 0 gets activated.

- Query
 - Character string: 0105049BFF005C [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 39 42 46 46 30 30 35 43 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>)</u>	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '9', 'B'	30343942
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'5', 'C' (in accordance with LRC calculation)	3543
Trailer	'CR', 'LF'	0D0A

6.5.19 Program Home Position Movement (PHOM) (Servo Press Type Only)

[1] Function

Raise the program home-return edge (write $FF00_H$ under the condition of change data being 0000_H), and the movement will be made to the program home position set in each press program.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	4. 9 -	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$) 00 $_{\rm H}$ when broadcast is specified
Function code [H]	2	ʻ0', ʻ5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '9', 'C'	Program home position movement setting
Changed data [H]	4	Arbitrary	Program home position movement execution ON: 'F', 'F', '0', '0' Program home position movement execution OFF: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response

Movement of the actuator connected to Axis No. 0 gets activated.

Query (First time: Write the 0000_H twice to raise the edge, Second time: Movement command)

First time: Character string:

0105049C00005A [CR] [LF]

Hexadecimal: Second time: Character string: 0105049CFF005B [CR] [LF]

3A 30 31 30 35 30 34 39 43 30 30 30 30 35 41 0D 0A

Hexadecimal:

3A 30 31 30 35 30 34 39 43 46 46 30 30 35 42 0D 0A

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(,) -	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '9', 'C'	30343943
Changed data [H]	First time: '0', '0', '0', '0' Second time: 'F', 'F', '0', '0'	First time: 30303030 Second time: 46463030
Error check [H]	First time: '5', 'A' (in accordance with LRC calculation) Second time: '5', 'B' (in accordance with LRC calculation)	First time: 3542 Second time: 3541
Trailer	'CR', 'LF'	0D0A

6.5.20 Search Stop (SSTP) (Servo Press Type Only)

[1] Function

Setting can be switched whether to finish the press program or not after search operation is completed.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(_) _	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$) 00 $_{\rm H}$ when broadcast is specified
Function code [H]	2	ʻ0', ʻ5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '9', 'D'	Search operation stop setting
Changed data [H]	4	Arbitrary	Stopped after search operation: 'F', 'F', '0', '0' Not stopped after search operation: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response

After search of the actuator connected to Axis No. 0, press program will be stopped.

- Query
 - Character string: 0105049DFF005A [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 39 44 46 46 30 30 35 41 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u>)</u>	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '9', 'D'	30343944
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'5', 'A' (in accordance with LRC calculation)	3541
Trailer	'CR', 'LF'	0D0A

6.5.21 Program compulsoly finish (FPST) (Servo Press Type Only)

[1] Function

Raise the press program compulsory complete edge (write $FF00_H$ under the condition of change data being 0000_H), and the press program will be compulsorily finished. While the change data retains $FF00_H$, the start command of the press program cannot be received.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	6 <u>.</u> 9	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$) 00 $_{\rm H}$ when broadcast is specified
Function code [H]	2	ʻ0', ʻ5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '9', 'E'	Program compulsoly finish setting
Changed data [H]	4	Arbitrary	Program compulsoly finish ON: 'F', 'F', '0', '0' Program compulsoly finish OFF: '0', 0F', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response

Press program of the actuator connected to Axis No. 0 will be compulsorily finished.

Query (First time: Write the 0000_H twice to raise the edge, Second time: Compulsoly finish)
 First time: Character string: 0105049E000058 [CR] [LF]

 Hexadecimal:
 3A 30 31 30 35 30 34 39 45 30 30 30 30 35 38 0D 0A

 Second time: Character string:
 0105049EFF0059 [CR] [LF]

Hexadecimal: <u>3A 30 31 30 35 30 34 39 45 46 46 30 30 35 39 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	<i>(</i> ,)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '9', 'E'	30343945
Changed data [H]	First time: '0', '0', '0', '0' Second time: 'F', 'F', '0', '0'	First time: 30303030 Second time: 46463030
Error check [H]	First time: '5', '8' (in accordance with LRC calculation) Second time: '5', '9' (in accordance with LRC calculation)	First time: 3538 Second time: 3539
Trailer	'CR', 'LF'	0D0A

6.5.22 Program Start (PSTR) (Servo Press Type Only)

[1] Function

Raise the program start edge (write $FF00_H$ under the condition of change data being 0000_H), and the press program in the program number set in POSR Register will be executed.

[2] Query format

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	(<u>)</u>	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	ʻ0', ʻ5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '9', 'F'	Press program Start setting
Changed data [H]	4	Arbitrary	Press program Start ON:'F', 'F', '0', '0' Press program Start OFF: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[3] Response

Press program of the actuator connected to Axis No. 0 will be exected.

 Query (First time: Write the 0000_H twice to raise the edge, Second time: Press program exected)

First time: Character string: Hexadecimal:

0105049F000057 [CR] [LF]

 Hexadecimal:
 3A 30 31 30 35 30 34 39 46 30 30 30 30 35 37 0D 0A

 Second time: Character string:
 0105049FFF0058 [CR] [LF]

University of the stand of the

Hexadecimal: <u>3A 30 31 30 35 30 34 39 46 46 46 30 30 35 38 0D 0A</u>

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	(<u> </u>)	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '9', 'F'	30343946
Changed data [H]	First time: '0', '0', '0', '0' Second time: 'F', 'F', '0', '0'	First time: 30303030 Second time: 46463030
Error check [H]	First time: '5', '7' (in accordance with LRC calculation) Second time: '5', '8' (in accordance with LRC calculation)	First time: 3537 Second time: 3538
Trailer	'CR', 'LF'	0D0A

6.6 Direct Writing of Control Information (Function code 06)

6.6.1 Writing to Registers

[1] Function

These queries change (write) data in registers of a slave.

In case of broadcast, data of registers of the same address of all slaves is changed. For the details of each register, refer to

- [4.3.2 [5] Details of device controller register 1]
- [4.3.2 [6] Details of device controller register 2]
- [4.3.2 [7] details of the position number command register and position movement specification register and program number command register (Servo Press) type]

[2] Start address list

Address	Symbol	Name	Byte
0D00	DRG1	Device control register 1	2
0D01	DRG2	Device control register 2	2
0D03	POSR	Position number command register/ Program number command register	2
9800	POSR	Position movement command register	2

The registers above are control command registers. The bits of these registers are assigned to input ports by PIO patterns when "PIO/Modbus Switch Status (PMSS) (refer to [4.3.2 [14])" is set to disable Modbus commands (enable PIO commands). These registers can be rewritten when the Modbus commands are enabled (PIO commands are disabled).

[3] Query format

Specify the address and data of the register whose data is to be changed in the query message. Data to be changed shall be specified as 16-bit data in the changed data area of the query.

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰ <u>،</u> ۲	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '6'	Write to a single coil DO.
Start address [H]	4	Arbitrary	[Refer to [6.6.1 [2] Start address list]
Changed data [H]	4	-	Refer to List of changed data [4.3.2 [5]] to [4.3.2 [7]]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[4] Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to [7.1 Responses at Errors (Exception

Responses)]) will be returned, or no response will be returned.

Examples of different operations are shown in (1) to (3) below.

- (1) A sample query that turns the servo ON a controller of axis No. 0 on and then executes home return operation is performed.
 - Query

•First time: <u>01 06 0D 00 10 00 DC [CR] [LF]</u> (Servo ON) •Second time: <u>01 06 0D 00 10 10 CC [CR] [LF]</u> (Home return)

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	6 <u> </u>	3A	
Slave address [H]	ʻ0', ʻ1'	3031	Axis No.0 + 1
Function code [H]	'0', '6'	3036	
Start address [H]	'0', 'D', '0', '0'	30443030	First time: Device control register 1 Second time: Device control register 1
Changed data [H]	First time: '1', '0', '0', '0' Second time: '1', '0', '1', '0'	First time: 31303030 Second time: 31303130	First time: Device control register 1 is ON Second time: Device control register 1 (SON + HOME) is ON (Keep the servo ON bit "1" in cases other than when the servo is OFF).
Error check	First time: 'D', 'C' Second time: 'C', 'C'	First time: 4443 Second time: 4343	In accordance with LRC calculation
Trailer	'CR', 'LF'	0D0A	

 * Home return is not performed even if 1010_H is sent to change the data while the servo is OFF (Refer to [Timing Chart at Startup described in Each RC Controller Instruction Manual])

* To keep the previous status, send the previous status even if there is no change. As in the example above, keep the servo ON bit as "1" at home return as well.

(2) Move to position No. 1 using the position movement specification register (Address 9800_H).

Have the operation in [Previous page (1)] to complete the home-return operation before having this operation.

Query

01 06 98 00 00 01 60 [CR] [LF]

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	(<u>)</u>	3A	
Slave address [H]	'0', '1'	3031	Axis No.0 + 1
Function code [H]	'0', '6'	3036	
Start address [H]	ʻ9ʻ, ʻ8ʻ, ʻ0ʻ, ʻ0ʻ	39383030	Position movement specification register
Changed data [H]	ʻ0ʻ, ʻ0ʻ, ʻ0ʻ, ʻ1ʻ	30303031	Specify position No. 1 ^(*1)
Error check	ʻ6ʻ, ʻ0ʻ	3630	In accordance with LRC calculation
Trailer	'CR', 'LF'	0D0A	

*1 As soon as a position number is written to this register, the actuator starts moving. The CSTR (start signal) is not required.

(3) Move to position No. 1 using the position number command register (Address $0D03_{H}$).

Have the operation in (1) to complete the home-return operation before having this operation.

- Query
 - First time: 01 06 0D 03 00 01 BA A6 (Specify position No. 1)
 - Second time: 01 06 0D 00 10 00 86 A6 (Turn OFF the CSTR (start signal))
 - Third time: 01 06 0D 00 10 08 87 60 (Turn ON the CSTR (start signal))

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	4 <u></u> , 9	3A	
Slave address [H]	ʻ0', ʻ1'	3031	Axis No.0 + 1
Function code [H]	'0', '6'	3036	
Start address [H]	First time: '0', 'D', '0', '3' Second time: ' 0', 'D', '0', '0' Third time: '0', 'D', '0', '0'	First time: 30443033 Second time: 30443030 Third time: 30443030	First time: Specify position No. Second time: Device control register 1 Third time:: Device control register 1
Changed data [H]	First time: '0', '0', '0', '1' Second time: '1', '0', '0', '0' Third time: '1', '0', '0', '8'	First time: 30303031 Second time: 31303030 Third time: 31303038	First time: Specify position No. 1 Second time: Device control register 1 (SON) is ON Third time: Device control register 1 (SON+CSTR) is ON
Error check	First time: 'E', '8' Second time: 'D', 'C' Third time: 'D', '4'	First time: 4538 Second time: 4443 Third time: 4434	In accordance with LRC calculation
Trailer	'CR', 'LF'	0D0A	

 $^{\ast}~$ To keep the previous status, send the previous status even if there is no change.

As in the example above, keep the SON (servo ON) bit as "1" at other than servo OFF.

6.7 Direct Writing of Positioning Data (Function code 10)

6.7.1 Numerical Value Movement Command

[1] Function

Specify the target position in PTP positioning operation using absolute coordinates. It is possible to command the actuator to move via numerical values by writing directly to the group of registers at addresses from 9900_H to 9908_H (can be set in one message). Values of all registers, other than the control flag specification register (Address: 9908_H), will become effective once the values are sent. If there is no need to change the target position, positioning band, speed, acceleration/deceleration, push-current limiting value and control specification, therefore, each subsequent numerical movement command can be issued simply by writing a desired register that can effect an actual movement command based on changing of the applicable register alone (refer to [[2] Start address list]).

[2] Start address list

This group of registers is used to move the actuator by specifying the target position coordinates, positioning band, speed acceleration/deceleration, push-operation current limit control specification flags and so on as numerical values.

Data of start addresses in the list (6 registers in total) can be changed with one transmission.

Address [H]	Symbol	Name	Sign	Able to effect an actual movement command by changing the applicable register alone	Register size	Byte size	Unit
9900	PCMD	Target position specification register	0	0	2	4	0.01mm
9902	INP	Positioning band specification register		×	2	4	0.01mm
9904	VCMD	Speed specification register		0	2	4	0.01mm/s
9906	ACMD	Acceleration/deceleration specification register		0	1	2	0.01G
9907	PPOW	Push-current limiting value specification register		0	1	2	%
9908	CTLF	Control flag specification register		× Initialization after each movement	1	2	-

[3] Query format

1 register = 2 bytes = 16-bit data

Field	Number of characters (number of bytes)	ASCII mode fixed character string	Remarks
Header	1	6_ 9 _	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H if broadcast is specified
Function code [H]	2	'1', '0'	Numerical value specification
Start address [H]	4	Arbitrary	Refer to [6.7.1 [2] Start address list]
Number of registers [H]	4	Arbitrary	Refer to [6.7.1 [2] Start address list]
Number of bytes [H]	2	In accordance with the number of registers above	Input a number doubled to the register count indicated above
Changed data 1 [H]	4	-	Refer to [6.7.1 [2] Start address list]
Changed data 2 [H]	4	-	Refer to [6.7.1 [2] Start address list]
Changed data 3 [H]	4	-	Refer to [6.7.1 [2] Start address list]
:	:	-	:
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	Up to 256	-	

[4] Response format

When normally changed, the response message responds with a copy of the query message excluding the number of bytes and changed data.

Field	Number of characters (number of bytes)	ASCII mode fixed character string	Remarks
Header	1	6 <u></u> 3	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H if broadcast is specified
Function code [H]	2	ʻ1', ʻ0'	Numerical value specification
Start address [H]	4	Arbitrary	Refer to [6.7.1 [2] Start address list]
Number of registers [H]	4	Arbitrary	Refer to [6.7.1 [2] Start address list]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17	-	

[5] Detailed explanation of registers

- Target position specification register (PCMD)
 - This register specifies the target position in PTP positioning operation using absolute coordinates. The value of this register is set in units of 0.01mm in a range of –999999 to 999999 (FFF0BDC1_H (Note 1) to 000F423F_H). When the absolute coordinate is indicated, operation starts with 0.2mm in front (Note 2) of the soft limit setting value as the target position if the setting of the parameter exceeds the soft limit. The actuator will start moving when the lower word of this register (symbol: PCMD, address: 9900_H) is rewritten. In other words, a numerical movement command can be issued simply by writing a target position in this register.
 - Note 1 To set a negative value, use a two's complement.
 - Note 2 For a revolution axis set to Index Mode, the soft limit setting value is the target position.
- Positioning band register (INP)

This register is used in two different ways depending on the type of operation. The first way is the normal positioning operation, where it specifies the allowable difference between the target position and current position to be used in the detection of position complete. The second way is the push-motion operation, where it specifies the push-motion band. The value of this register is set in units of 0.01mm in a range of 1 to 999999 (00000001_H to $000F423F_H$). Whether the normal operation or push-motion operation is specified by the applicable bit in the control flag specification register as explained later. Changing this register alone will not start actuator movement.

Caution

- It is necessary that the positioning band is at or more than the value figured out with the formulas below.
 - For Servo motor: Actuator Lead Length ÷ Encoder Pulse
 - For Pulse Motor: Actuator Lead Length ÷ Encoder Pulse × 3 Apply the servo motor formula for RCP6 Actuator
- Speed specification register (VCMD)

This register specifies the moving speed. The value of this register is set in units of 0.01 mm/s in a range of 1 to 999999 (00000001_H to $000F423F_H$). If the specified value exceeds the maximum speed set by a parameter, an alarm will generate the moment a movement start command is issued.

The actuator will start moving when this lower word of this register is rewritten. In other words, the speed can be changed while the actuator is moving, simply by rewriting this register.

Acceleration/deceleration specification register (ACMD)

This register specifies the acceleration or deceleration. The value of this register is set in units of 0.01G in a range of 1 to 300 (0001_{H} to $012C_{H}$). If the specified value exceeds the maximum acceleration or deceleration set by a parameter, an alarm will generate the moment a movement start command is issued.

The actuator will start moving when this register is rewritten. In other words, the acceleration/deceleration can be changed while the actuator is moving, simply by rewriting this register.

Push-current limiting value (PPOW)

Set the current limit during push-motion operation in PPOW. Set an appropriate value by referring to the table below.

Actuator model name	Pushable range [%]	Settable range (input value) [H]
Actuator other than RCS2-RA13R	20 to 70 ^(Note 1)	33 to B2
RCS2-RA13R	20 to 200	33 to 1FE

Note 1 The setting ranges may vary depending on the actuator.

For details, refer to the [IAI catalog] or [instruction manual of actuator].

The actuator will start moving when this register is rewritten. In other words, the current limiting value can be changed during push-motion operation simply by rewriting this register.

Sample push-motion current setting

• When setting the current to 20%

255 (100%) × 0.2 (20%) = 51 \rightarrow 33_H (convert into hexadecimal number)

Control Flag Specification Register (CTLF)

Set the method of operation.

If push-motion operation or incremental operation (pitch feed) is selected, set this register every time a movement command is issued. (This is because the register will be overwritten with the default value every time the actuator moves.)

CTLF bit structure

The details of each signal are described in the next page.

- Bit 1 (PUSH) = 0: Normal operation (default) 1: Push-motion operation
- Bit 2 (DIR) = 0: The direction of push-motion operation after completion of approach is defined as the forward direction (default).
 - 1: The direction of push-motion operation after completion of approach is defined as the reverse direction.

This bit is used to calculate the direction of final stop position from PCMD. If this bit is set incorrectly, therefore, the target position will deviate from the specified position by a distance corresponding to " $2 \times INP$," as shown in the figure below. If bit 1 is set to "0", the setting of this bit is invalid.

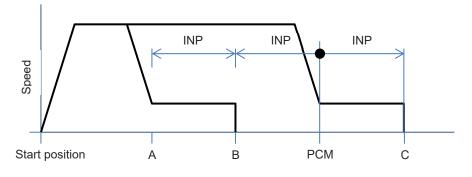


Fig. 6.7-1 Operating Direction in Push-motion Operation

• Bit 3 (INC) = 0: Normal operation (default) 1: Incremental operation (pitch feed)

Setting this bit to "1" will enable the actuator to operate relative to the current position. In this operation, the actuator behaves differently between normal operation and pushmotion operation (CTLF bit 1). While the travel is calculated with respect to the target position (PCMD) in normal operation, it is calculated relative to the current position in push-motion operation (when bit 1 = 1).

Here, since relative coordinate calculation involves adding up pulses in [mm], followed by conversion, unlike a calculation method involving addition after pulse conversion, "repeated relative movements will not cause position deviation as a result of cumulative errors corresponding to fraction pulses that are not divisible with certain lead settings".

• Bit 4 (GSL0), 5 (GSL1) = Refer to the table below

(ACON-CA/CB/CYB, SCON-CA/CAL/CB/ Servo Press Type)

Do not attempt to change the number from "0" for those other than the models above. Doing so may cause an error in operation.

GSL1	GSL0	Function	
0	0	Select parameter set 0 (default)	
0	1	Select parameter set 1	
1	0	Select parameter set 2	
1	1	Select parameter set 3	

You can register a maximum of four servo gain parameter sets consisting of six parameters and move the actuator to each position by selecting a different parameter set every time.

For details, refer to the [Instruction manual of each controller].

• Bit 6 (MOD0), 7 (MOD1) = Refer to the table below

(ACON-C/CY/SE/CA/CB/CYB, DCON-CA/CB/CYB, PCON-CA/CFA/CB/CFB/CYB, SCON-C/CA/CAL/CB, ERC3 only and and SCON Servo Press Type is not applicable)

MOD1	MOD0	Function	
0	0	Trapezoid pattern (default)	
0	1	S-motion	
1	0	Primary delay filter	
1	1	Cannot be used.	

These signals are used to select the acceleration/deceleration pattern characteristics. Set one of the patterns before issuing an actuator movement command.

For details, refer to the [Instruction manual of each controller].

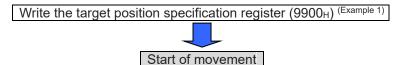
• Bit 12 (NTC0), 13 (NTC1) = Refer to the table below

(ACON-CA/CB/CYB, SCON-CA/CAL/CB and RCM-P6AC only, and SCON Servo Press Type is not applicable)

NTC1	NTC0	Function	
0	0	Do not use vibration control (default).	
0	1	Select parameter set 1	
1	0	Select parameter set 2	
1	1	Select parameter set 3	

When vibration control is used, you can register a maximum of three parameter sets and move the actuator to each position by selecting a different parameter set every time. For details, refer to the [Instruction manual of each controller].

[6] Example of use


Examples of different operations are shown in (1) to (7) below.

(1) Move by changing the target position. (All data other than the target position are the default values of their respective parameters.)

Conditions: The operation conditions conform to the default speed, default acceleration/deceleration and default positioning band set by the controller's user parameters. Only the target position is changed to move the actuator.

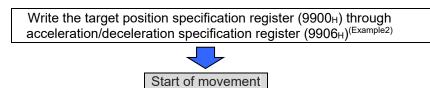
complement: Controller's user parameters

- Default speed (parameter No. 8) → Maximum speed of the applicable actuator as specified in the catalog
- Default acceleration/deceleration (parameter No. 9) → Rated acceleration of the applicable actuator as specified in the catalog
- Default positioning band (parameter No. 10) \rightarrow Default value = 0.1mm

(Example1) Target position: 50 mm

Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50		N	eed not be set.		

■ Query: 01 10 9900 0002 04 0000 1388 B5 [CR] [LF]


■ Response: 01 10 9900 0002 54 [CR] [LF]

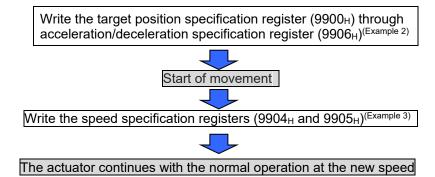
* The query message is copied, except for the number of bytes and new data, and returned as a response.

Breakdown of Query Message

Field	ASCII mode fixed character string	Converted ASCII code data [H]	Remarks
Header	<u>د.</u> ۶ -	3A	
Slave address	'0', '1'	3031	Axis No.0 + 1
Function code	'1', '0'	3130	
Start address	ʻ9', ʻ9', ʻ0', ʻ0'	39393030	The starting address corresponds to the setting of target position specification register $9900_{\rm H}$.
Number of registers	'0', '0', '0', '2'	30303032	Addresses $9900_{\rm H}$ to $9901_{\rm H}$ are written.
Number of bytes	'0', '4'	3034	2 registers \times 2 = 4 bytes \rightarrow 4_{H}
New data 1, 2	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
(target position) Input unit (0.01 mm)	'1', '3', '8', '8'	31333838	$50mm \times 100 = 5000 \rightarrow 1388_{H}$
Error check	'B', '5'	4235	CRC checksum calculation result $\rightarrow 38 \text{AF}_{\text{H}}$
Trailer	'CR', 'LF'	0D0A	
Total number of bytes	27	-	

- (2) Move by changing the target position. (as well as data other than the target position).
 - Conditions: Change the target position, speed and acceleration/deceleration each time the actuator is moved, with the actuator speed changed at a given time during movement.

(Example 2) Target position: 50 mm


Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	0.1	100	0.3	Need not be set.	

■ Query: 01 10 9900 0007 0E 0000 1388 0000 000A 0000 2710 001E 47 [CR] [LF]

- Response: 01 10 9900 0007 4F [CR] [LF]
 - * The query message is copied, except for the number of bytes and new data, and returned as a response.
- Breakdown of Query Message

Field	ASCII mode fixed character string	Converted ASCII code data [H]	Remarks
Header	۰ <u>.</u> ,	3A	
Slave address	'0', '1'	3031	Axis No.0 + 1
Function code	ʻ1', ʻ0'	3130	
Start address	'9', '9', '0', '0'	39393030	The starting address corresponds to the setting of target position specification register 9900 _H .
Number of registers	'0', '0', '0', '7'	30303039	Addresses 9900_{H} to 9906_{H} are written.
Number of bytes	'0', 'E'	3132	7 registers $\times2$ = 14 bytes \rightarrowE_{H}
New data 1, 2	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
(target position) Input unit (0.01mm)	'1', '3', '8', '8'	31333838	$50\text{mm} imes 100 = 5000 ightarrow 1388_{H}$
New data 3, 4	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
(Positioning band) Input unit (0.01mm)	'0', '0', '0', 'A'	30303041	0.1mm × 100 = 10→ 000A _H
New data 5, 6 (Speed)	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
Input unit (0.01mm/s)	'2', '7', '1', '0'	32373130	100mm/s \times 100 = 10000 \rightarrow 2710_H
New data 7 (Acceleration/deceleration) Input unit (0.01G)	'0', '0', '1', 'E'	30303145	$0.3G \times 100 = 30 \rightarrow 001E$ _H
Error check	'4', '7'	3437	CRC checksum calculation result $\rightarrow 50 \text{CF}_{\text{H}}$
Trailer	'CR', 'LF'	0D0A	
Total number of bytes	47	-	

- (3) Change the speed while the actuator is moving.
 - Conditions: Change the target position, speed and acceleration/deceleration each time the actuator is moved, with the actuator speed changed at a given time during movement.

(Example 3) Change the speed from 100mm/s to 50mm/s while the actuator is moving.

Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	0.1	$100 \rightarrow 50$	0.3	Need no	ot be set.

1) Start the movement at a speed of 100mm/s. Refer to [above example (2) Move by changing the target position.].

- Query: 01 10 9900 0007 0E 0000 1388 0000 000A 0000 2710 001E 47 [CR] [LF]
- Response: <u>01 10 9900 0007 4F [CR] [LF]</u>
- 2) Change the speed to 50mm/s.
 - Query: 01 10 9904 0002 04 0000 1388 B1 [CR] [LF]
 - Response: 01 10 9904 0002 50 [CR] [LF]
 - * The query message is copied, except for the number of bytes and new data, and returned as a response.
 - Breakdown of Query Message (Change the speed to 50mm/s. (Refer to the [Example 2] for the query message used to start the movement at 100mm/s.))

Field	ASCII mode fixed character string	Converted ASCII code data [H]	Remarks
Header	۰ <u>.</u> ۲	3A	
Slave address	'0', '1'	3031	Axis No.0 + 1
Function code	'1', '0'	3130	
Start address	ʻ9', ʻ9', ʻ0', ʻ4'	39393034	The starting address corresponds to the setting of target position specification register $9904_{\rm H}$.
Number of registers	'0', '0', '0', '2'	30303032	Addresses $9904_{\rm H}$ to $9905_{\rm H}$ are written.
Number of bytes	'0', '4'	3034	2 registers $\times2$ = 4 bytes $\rightarrow4_{H}$
New data 5, 6 (Speed)	ʻ0', ʻ0', ʻ0', ʻ0'	30303030	All upper bits of the 32-bit data are "0".
Input unit (0.01mm/s)	'1', '3', '8', '8'	31333838	50mm/s \times 100 = 5000 \rightarrow 1388 _H
Error check	'B', '1'	4231	CRC checksum calculation result $\rightarrow 395C_{\rm H}$
Trailer	'CR', 'LF'	0D0A	
Total number of bytes	27	-	

- (4) Move in the incremental (pitch feed) mode.
 - Conditions: The operation conditions conform to the default speed, default acceleration/deceleration and default positioning band set by the controller's user parameters. Only the pitch width is changed to move the actuator.

Write the target position specification register (9900_H) through control flag specification register (9908_H: Incremental setting) $^{(Example 4)}$

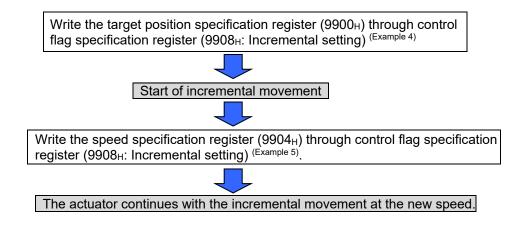
Complement

 Addresses 9900_H and 9908_H alone cannot be changed in a single data transmission. Since all addresses are sequential, send two messages if 9900_H and 9908_H alone are changed. If you want to send only one message, write all addresses from 9900_H to 9908_H.

(Example 4) Move in the incremental mode by setting the pitch to 10mm.

Pitch [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
10	0.1	100	0.3	0	Incremental (bit 3 = 1)

■ Query: 01 10 9900 0009 12 0000 03E8 0000 000A 0000 2710 001E 0000 0008 E9 [CR] [LF]


■ Response: 01 10 9900 0009 4D [CR] [LF]

* The query message is copied, except for the number of bytes and new data, and returned as a response.

Field	ASCII mode fixed character string	Converted ASCII code data [H]	Remarks
Header	(.)	3A	
Slave address	'0', '1'	3031	Axis No.0 + 1
Function code	ʻ1', ʻ0'	3130	
Start address	ʻ9', ʻ9', ʻ0', ʻ0'	39393030	The starting address corresponds to the setting of target position specification register $9900_{\rm H}$.
Number of registers	ʻ0', ʻ0', ʻ0', ʻ9'	30303039	Addresses 9900_{H} to 9908_{H} are written.
Number of bytes	'1', '2'	3132	9 registers \times 2 = 18 bytes \rightarrow 12_{H}
New data 1, 2	ʻ0', ʻ0', ʻ0', ʻ0'	30303030	All upper bits of the 32-bit data are "0".
(target position) Input unit (0.01mm)	'0', '3', 'E', '8'	30334538	$10mm\times 100=1000\rightarrow 03E8_{H}$
New data 3, 4	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
(Positioning band) Input unit (0.01mm)	'0', '0', '0', 'A'	30303041	$0.1\text{mm} imes 100 = 10 ightarrow 000\text{A}_{H}$
New data 5, 6 (Speed)	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
Input unit (0.01mm/s)	'2', '7', '1', '0'	32373130	100mm/s \times 100 = 10000 \rightarrow 2710_H
New data 7 (Acceleration/deceleration) Input unit (0.01G)	'0', '0', '1', 'E'	30303145	$0.3G \times 100 = 30 \rightarrow 001E$ H
New data 8 (Push) Input unit [%]	'0', '0', '0', '0'	30303030	$0\% ightarrow 0_H$
New data 9 (Control flag)	'0', '0', '0', '8'	30303038	(Incremental setting) $1000_b \rightarrow 0008_H$
Error check	'E', '9'	4539	CRC checksum calculation result $\rightarrow F3A0_{H}$
Trailer	'CR', 'LF'	0D0A	
Total number of bytes	55	-	

Breakdown of Query Message

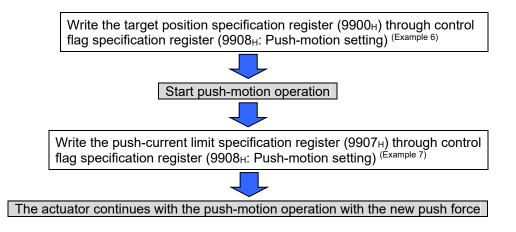
- (5) Change the speed during incremental movement (pitch feed).
 - Conditions: Change the target position, speed and acceleration/deceleration each time the actuator is moved, with the positioning band changed at a given time during movement.

Complement

After the control flag specification register (9908_H) is set, the register will return to the default value (0_H: Normal movement) once the actuator starts moving. Accordingly, you must set the control flag specification register (9908_H) and send it again if another incremental or push-motion operation is to be performed.

(Example 5) Change the speed from 100mm/s to 50mm/s while the actuator is moving.

Pitch [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
10	0.1	100 ightarrow 50	0.3	0	Incremental (bit 3 = 1)


- 1) Start moving at a speed of 100mm/s. Refer to [above example 4 Moving in the incremental (pitch feed) mode].
 - Query: 01 10 9900 0009 12 0000 03E8 0000 000A 0000 2710 001E 0000 0008 E9 [CR] [LF]
 - Response: 01 10 9900 0009 4D [CR] [LF]

2) Change the speed to 50mm/s.

- Query: 01 10 9904 0005 0A 0000 1388 001E 0000 0008 82 [CR] [LF]
- Response: 01 10 9904 0005 4D [CR] [LF]
 - * The query message is copied, except for the number of bytes and new data, and returned as a response.
- Breakdown of Query Message (Change the speed to 50mm/s. (Refer to the [above example] for the query message used to start the movement at 100mm/s.))

Field	ASCII mode fixed character string	Converted ASCII code data [H]	Remarks
Header	(<u> ;</u>	3A	
Slave address	'0', '1'	3031	Axis No.0 + 1
Function code	'1', '0'	3130	
Start address	'9', '9', '0', '4'	39393034	The start address is the target position specification register 9904_{H} .
Number of registers	'0', '0', '0', '5'	30303032	Addresses 9904_{H} to 9908_{H} are written.
Number of bytes	'0', 'A'	3034	5 registers $\times2$ = 10 bytes \rightarrowA_{H}
New data 5, 6 (Speed)	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
Input unit (0.01mm/s)	'1', '3', '8', '8'	31333838	$50 mm/s \times 100 = 5000 \rightarrow 1388_{H}$
New data 7 (Acceleration/deceleration) Input unit (0.01G)	'0', '0', '1', 'E'	30303145	$0.3G \times 100 = 30 \rightarrow 001E$ _H
New data 8 (Push) Input unit [%]	'0', '0', '0', '0'	30303030	$0\% \to 0_{H}$
New data 9 (Control flag)	'0', '0', '0', '8'	30303038	(Incremental setting) $1000_b \rightarrow 0008_H$
Error check	'8', '2'	3832	LRC checksum calculation result $\rightarrow 82_{\rm H}$
Trailer	'CR', 'LF'	0D0A	
Total number of bytes	39	-	

- (6) Perform a push-motion operation. (changing pushing force during push-operation)
 - Conditions: Perform push-motion operation by changing the push force at a desired time while the actuator is pushing the work part.

The example of query and response are described in the next page.

(Example 6) Perform a push-motion operation for 20mm from the 50mm position at a currentlimiting value of 70%.

Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	20	100	0. 3	70	Push-motion operation (bit 1 = 1, bit 2 = 0, 1)

■ Query: 01 10 9900 0009 12 0000 1388 0000 07D0 0000 2710 001E 00B2 0006 BC [CR] [LF]

■ Response: 01 10 9900 0009 4D [CR] [LF]

* The query message is copied, except for the number of bytes and new data, and returned as a response.

Breakdown of Query Message

Field	ASCII mode fixed character string	Converted ASCII code data [H]	Remarks
Header	(<u>)</u>	3A	
Slave address	'0', '1'	3031	Axis No.0 + 1
Function code	'1', '0'	3130	
Start address	ʻ9', ʻ9', ʻ0', ʻ0'	39393030	The starting address corresponds to the setting of target position specification register 9900_{H} .
Number of registers	'0', '0', '0', '9'	30303039	Addresses 9900_{H} to 9908_{H} are written.
Number of bytes	'1', '2'	3132	9 registers \times 2 = 18 bytes \rightarrow 12_{H}
New data 1, 2 (target	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
position) Input unit (0.01mm)	'1', '3', '8', '8'	31333838	$50\text{mm}\times100=5000\rightarrow1388_{\text{H}}$
New data 3, 4	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
(Positioning band) Input unit (0.01mm)	'0', '7', 'D', '0'	30374430	$20mm \times 100 = 2000 \rightarrow 07D0_{H}$
New data 5, 6 (Speed)	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
Input unit 〔0.01mm/s)	'2', '7', '1', '0'	32373130	100mm/s \times 100 = 10000 \rightarrow 2710 _H
New data 7 (Acceleration/deceleration) Input unit (0.01G)	'0', '0', '1', 'E'	30303145	$0.3G\times 100=30\rightarrow 001E_{H}$
New data 8 (Push) Input unit 〔%〕	'0', '0', 'B', '2'	30304232	$70\% ightarrow B2_H$
New data 9 (Control flag)	'0', '0', '0', '6'	30303036	(Push setting) $0110_b \rightarrow 0006_H$
Error check	'B', 'C'	4243	LRC checksum calculation result $\rightarrow BC_{\text{H}}$
Trailer	'CR', 'LF'	0D0A	
Total number of bytes	55	-	

(Example 7) Change the push current limit from 70% to 50% during a push-motion operation.

Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	20	100	0.3	70 ightarrow 50	Push-motion operation (bit 1 = 1, bit 2 = 0, 1)

■ Query: 01 10 9907 0002 04 007F 0006 C4 [CR] [LF]

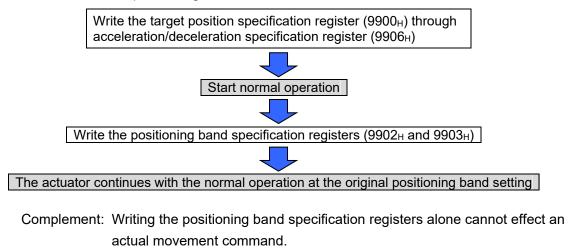
■ Response: 01 10 9907 0002 4D [CR] [LF]

* The query message is copied, except for the number of bytes and new data, and returned as a response.

Breakdown of Query Message

Field	ASCII mode fixed character string	Converted ASCII code data [H]	Remarks
Header	<i>د</i> . ،	3A	
Slave address	'0', '1'	3031	Axis No.0 + 1
Function code	'1', '0'	3130	
Start address	ʻ9', ʻ9', ʻ0', ʻ7'	39393037	The start address is the target position specification register $9907_{\rm H}$
Number of registers	'0', '0', '0', '2'	30303032	Addresses 9907 $_{\rm H}$ to 9908 $_{\rm H}$ are written.
Number of bytes	'0', '4'	3034	2 registers \times 2 = 4 bytes \rightarrow 4_{H}
New data 8 (Push) Input unit [%]	'0', '0', '7', 'F'	30303746	$50\% \rightarrow 7 F_{H}$
New data 9 (Control flag)	'0', '0', '0', '6'	30303036	(Push setting) $0110_{b} \rightarrow 0006_{H}$
Error check	'C', '4'	4334	CRC checksum calculation result $\rightarrow \text{C5C5}_{\text{H}}$
Trailer	'CR', 'LF'	0D0A	
Total number of bytes	27	-	

(7) Note (changing positioning band during movement)



Caution

• The positioning band cannot be changed while the actuator is moving.

Conditions: Change the target position, speed and acceleration/deceleration each time the actuator is moved, with the positioning band changed at a given time during movement.

→ Cannot be changed. If data is written, the data is reflected in the next positioning.

Therefore, the data changed by writing the positioning band specification registers (9902_H and 9903_H) will become effective when the next movement command is executed.

6.7.2 Writing Position Table Data

[1] Function

Position table data can be changed using this query.

Every time an access is made to the start address list (Address +0000_H to +000E_H), it is read out of the non-volatile memory in the unit of 1 position data, and gets stored to the non-volatile memory (EEPROM, FeRAM) after the writing is executed. Check the limit for number of writing from the [basic specifications described in an instruction manual for each controller].

* There is no limit to number of writing for FeRAM.

The EEPROM has a rewrite life of approx. 100, 000 times due to device limitations. If the position table data is written frequently, the EEPROM will reach its rewrite life quickly and a failure may occur. Accordingly, be careful not to let unexpected loops, etc., occur due to the logics on the host side.

[2] Start address list

In a query input, each address is calculated using the formula below:

1000_H + (16 \times Position No.)_H + Address (Offset)_H

Example : Change the speed command register for position No. 200

1000_H + (16 × 200 = 3200)_H + 4_H

= 1000_H + C80_H + 4_H

= 1C84_H

"1C84" becomes the input value for the start address field of this query.

Note The maximum position number varies depending on the controller model and the PIO pattern currently specified.

Address	Symbol	Name	Sign	Register size	Byte size	Input unit
+0000	PCMD	Target position	0	2	4	0.01mm
+0002	INP	Positioning band		2	4	0.01mm
+0004	VCMD	Speed command		2	4	0.01mm/s
+0006	ZNMP	Individual zone boundary +	0	2	4	0.01mm
+0008	ZNLP	Individual zone boundary -	0	2	4	0.01mm
+000A	ACMD	Acceleration command		1	2	0.01G
+000B	DCMD	Deceleration command		1	2	0.01G
+000C	PPOW	Push-current limiting value		1	2	%
+000D	LPOW	Load current threshold		1	2	%
+000E	CTLF	Control flag specification		1	2	

Position data change registers

* Addresses starting with "+" indicate offsets.

Note RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC cannot write in to this address. They return an exceptional response.

[3] Query format

1 register = 2 bytes = 16 bit data

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	1	۰ <u>،</u> ۲	
Slave address [H]	2	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H if broadcast is specified
Function code [H]	2	'1', '0'	Numerical value specification
Start address [H]	4	Arbitrary	Refer to [6.7.2 [2] Start address list]
Number of registers [H]	4	Arbitrary	Refer to [6.7.2 [2] Start address list]
Number of bytes [H]	2	In accordance with the number of registers above	A value corresponding to twice the number of registers specified above is input.
Changed data 1 [H]	4	-	Refer to [6.7.2 [2] Start address list]
Changed data 2 [H]	4	-	Refer to [6.7.2 [2] Start address list]
Changed data 3 [H]	4	-	Refer to [6.7.2 [2] Start address list]
:	:	-	:
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	Up to 256	-	

[4] Response format

If the change is successful, a response message that is effectively a copy of the query message, except for the byte count and new data, will be returned.

Field	Number of characters	ASCII mode fixed character string	Remarks
Header	-	-	
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H) 00 _H if broadcast is specified
Function code [H]	1	10	Numerical value specification
Start address [H]	2	Arbitrary	Refer to [6.7.2 [2] Start address list]
Number of registers [H]	2	Arbitrary	Refer to [6.7.2 [2] Start address list]
Error check [H]	2	CRC (16 bits)	
Trailer	-	-	
Total number of bytes	8	-	

[5] Detailed explanation of registers

Target position specification registers (PCMD)

The positioning target position in PTP Operation should be indicated in a position on the absolute coordinates. The value of this register is set in units of 0.01mm in a range of -999999 to 999999 (FFF0BDC1_H (Note 1) to 000F423F_H).

When the absolute coordinate is indicated, operation starts with 0.2mm in front (Note 2) of the soft limit setting value as the target position if the setting of the parameter exceeds the soft limit. The actuator will start moving when the lower word of this register (symbol: PCMD, address: 9900_{H}) is rewritten. In other words, a numerical movement command can be issued simply by writing a target position in this register.

Note 1 To set a negative value, use a two's complement.

Note 2 For a revolution axis set to Index Mode, the soft limit setting value is the target position.

Positioning band Specification Register (INP)

This register is used in two different ways depending on the type of operation. The first way is the normal positioning operation, where it specifies the allowable difference between the target position and current position to be used in the detection of position complete. The second way is the push-motion operation, where it specifies the push-motion band. The value of this register is set in units of 0.01mm in a range of 1 to 999999 (00000001_H to $000F423F_{H}$).

Whether the normal operation or push-motion operation is specified by the applicable bit in the control flag specification register as explained later.

Caution

- It is necessary that the positioning band is at or more than the value figured out with the formulas below.
 - For Servo motor: Actuator Lead Length ÷ Encoder Pulse
 - For Pulse Motor: Actuator Lead Length ÷ Encoder Pulse × 3
 - Apply the servo motor formula for RCP6 Actuator

■ Speed Specification Register (VCMD)

This register specifies the moving speed. The value of this register is set in units of 0.01 mm/s in a range of 1 to 999999 (00000001_H to $000F423F_H$). If the specified value exceeds the maximum speed set by a parameter, an alarm will generate the moment a movement start command is issued.

■ Individual Zone Boundaries ± (ZNMP, ZNLP)

These registers output zone signals that are effective only during positioning, separately from the zone boundaries set by parameters.

Set in ZNMP the positive zone signal output boundary expressed using absolute coordinates, and set the negative zone signal output boundary in ZNLP. The corresponding bit in the zone register remains ON while the current position is within these positive and negative boundaries. The value of this register is set in units of 0.01mm, and in a range of -9999999 to 9999999 (FFF0BDC1_H (Note 1) to 000F423F_H) for both registers. However, ZNMP must be greater than ZNLP.

Set the same value in both ZNMP and ZNLP to disable the individual zone output.

Note 1 To set a negative value, use a two's complement.

■ Acceleration specification register registers (ACMD)

This register specifies the acceleration during positioning. The value of this register is set in units of 0.01G in a range of 1 to 300 (1 to $0.012C_H$). If the specified value exceeds the maximum acceleration set by a parameter, an alarm will generate the moment a movement start command is issued.

Deceleration specification register (ACMD)

This register specifies the deceleration during positioning.

The value of this register is set in units of 0.01G in a range of 1 to $300 (1 \text{ to } 012C_{H})$. If the specified value exceeds the maximum deceleration set by a parameter, an alarm will generate the moment a movement start command is issued.

Push-current limiting value (PPOW)

Set the current limit during push-motion operation in PPOW. Set an appropriate value by referring to the table below.

Actuator model name	Pushable range [%]	Settable range (input value) [H]
Actuator other than RCS2-RA13R	20 to 70 ^(Note 1)	33 to B2
RCS2-RA13R	20 to 200	33 to 1FE

Note 1 The setting ranges may vary depending on the actuator.

For details, refer to the [IAI catalog] or [operation manual of actuator].

Operation should start once this register is overwritten. Therefore, it can be realized by this register when it is required to change the current limit during the pressing operation. Sample push-motion current setting:

• When setting the current to 20% 255 (100%) × 0.2 (20%) = 51 \rightarrow 33_H (Convert into hexadecimal number)

Load Output Current Threshold (LPOW)

To perform load output judgment, set the current threshold in LPOW. Set an appropriate value according to the actuator used, just like the push current limit (PPOW). If load output judgment is not performed, set "0".

■ Control Flag Specification register (CTLF)

Refer to [6.7.1 [5] Control flag specification register].

[6] Sample query

A sample query that rewrites all data of position No. 12 of axis No. 0 is shown below.

Target position [mm]	Positioning band [mm]	Speed [mm/s]	Individual zone boundary+ [mm]	Individual zone boundary- [mm]	Acceleration [G]	Deceleration [G]	Push [%]	Load Output Current Threshold [%]	Movement control
100	0.1	200	60	40	0.01	0.3	0	0	Normal movement

■ Query:

01 10 10C0 000F 1E 0000 2710 0000 000A 0000 4E20 0000 1770 0000 0FA0 0001 001E 0000 0000 0000 EE [CR] [LF]

■ Received response: 01 10 10C0 000F 10 [CR] [LF]

* The query message is copied, except for the number of bytes and new data, and returned as a response.

Breakdown of Query Message

Field	ASCII mode fixed character string	Converted ASCII code data [H]	Remarks
Header	<u>د</u> ،	3A	
Slave address	'0', '1'	3031	Axis No.0 + 1
Function code	'1', '0'	3130	
Start address	'1', '0', 'C', '0'	31304330	The start address is the target position specification register $10C0_{\rm H}$ for position No. 12. ^{*1}
Number of registers	'0', '0', '0', 'F'	30303046	Total 15 registers of register symbols PCMD to CTLF are specified to be written.
Number of bytes	'1', 'E'	3145	15 registers $\times2$ = 30 bytes $\rightarrow1E_{H}$
New data 1, 2	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
(Target position) Input unit (0.01mm)	'2', '7', '1', '0'	32373130	$100mm\times 100 = 10000 \rightarrow 2710_{H}$
New data 3, 4	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
(Positioning band) Input unit (0.01mm)	'0', '0', '0', 'A'	30303041	$0.1mm \times 100 = 10 \rightarrow 000A_{H}$
New data 5, 6 (Speed)	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
Input unit (0.01mm/s)	'4', 'E', '2', '0'	34453230	$200 \text{mm/s} \times 100 = 20000 \rightarrow 4\text{E}20_{\text{H}}$
New data 7, 8 (Individual zone	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
boundary+) Input unit (0.01mm)	'1', '7', '7', '0'	31373730	$60mm \times 100 = 6000 \rightarrow 1770_{H}$
New data 9, 10 (Individual zone	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are "0".
boundary-) Input unit (0.01mm)	'0', 'F', 'A', '0'	30464130	$40mm \times 100 = 4000 \rightarrow 0FA0_{H}$
New data 11 (Acceleration) Input unit (0.01G)	'0', '0', '0', '1'	30303031	$0.01G\times 100=1\rightarrow 0001_{H}$
New data 12 (Deceleration) Input unit (0.01G)	'0', '0', '1', 'E'	30303145	$0.3G\times 100=30\rightarrow 001E_{H}$
New data 13 (Push) Input unit [%]	ʻ0', ʻ0', ʻ0', ʻ0'	30303030	$0\% ightarrow 0_H$

6.7 Direct Writing of Positioning Data (Function code 10)

Field	ASCII mode fixed character string	Converted ASCII code data [H]	Remarks
New data 14 (Threshold Input unit [%]	'O', 'O', 'O', 'O'	30303030	$0\% \to 0_H$
New data 15 (Control flag)	'0', '0', '0', '0'	30303030	All bits are "0", because normal operation is specified. $0000_b \rightarrow 0000_H$
Error check	'E', 'E'	4545	CRC checksum calculation result \rightarrow 701E _H
Trailer	'CR', 'LF'	0D0A	
Total number of bytes	79	-	

*1 Calculation of start address

Example: All data of position No. 12 is changed. Accordingly, the target position address of position No. 12 is set in the start address field of this query.

$$1000_{\rm H}$$
 + (16 × 12 = 192)_H + 0_H

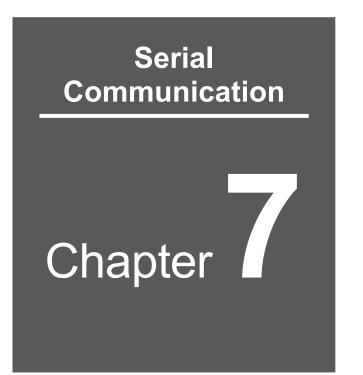
= 1000_H + C0_H + 0_H

= 10C0_H

"10C0" becomes the input value for the start address field of this query.

Shown below are the screens of IAI's IA-OS, indicating how position data changes before and after a query message is sent.

(Note) It is not possible to connect both PC software and Modbus at the same time. The example below shows the case when switching the connection between IA-OS and Modbus.


Before a query is sent

Positio	on data edit[Axi	is No. 0]									- •
Updat	te Save	Transfe		TEST Test run							
	port function	n display sele Velocity	ection Hide	~ Deceleration	Operation type	Load current	Positioning band[mm]	Zone + side	Zone - side		Positioning
No.	[mm]	[mm/s]	[G]	[G]	(Pressing force[%])	threshold[%]	/ pressing band[mm]	[mm]	[mm]	Acceleration/deceleration mode	method
9											
10				(
11											
12											

After a query is sent

Upda	e Save	Transfe	r Print	TEST Test run							
dit su No.	Position [mm]	velocity [mm/s]	ction Hide Acceleration [G]	Ceceleration [G]	Operation type (Pressing force(%))	Load current threshold[%]	Positioning band[mm] / pressing band[mm]	Zone + side [mm]	Zone - side [mm]	Acceleration/deceleration mode	Positioning method
9 10											
	_	200.00	0.01	0.20	Positioning	0	0.10	60.00	40.00	0:Trapezoid	0:Absolute position

* The overwritten data is not displayed until the button is pressed or the Edit Position Data window is reopened.

Troubleshooting

7.1	Responses at Errors (Exception Responses)······7-1
7.2	Notes ······7-4
73	Countermeasure When Communication Not Well Established ···· 7-5

7.1 Responses at Errors (Exception Responses)

In each query (command), except for a broadcast query message, the master issues a query by expecting a "successful" response (response), and the applicable slave must return a response to the query. If the query is processed successfully, the slave returns a "successful" response. If an error occurs, however, the slave returns an exception response.

The slave responds to a query in one of the following four ways:

- (1) The slave receives the query successfully, processes it successfully, and then returns a "successful" response.
- (2) The slave returns no response because the query could not be received due to a communication error, etc. The master generates a timeout error.
- (3) The slave also returns no response if the query is received but is found invalid because a LRC/CRC error is detected. In this case, the master also generates a timeout error.
- (4) If the query is received properly without generating errors but it cannot be processed for some reason (such as when the applicable register does not exist), the slave returns an exception response that contains an exception code indicating the content of exception.

Example of exception response generation

Field	Sample value [Hex]	ASCII mode character string	RTU mode 8 bits [Hex]
Header		د. ۲ •	None
Slave address	03н	'0', '3'	03
Function code	02 _H	'0', '2'	02
Start address [H]	04 _H	'0', '4'	04
Start address (L)	A1 _H	'A', '1'	A1
Number of DIs [H]	00н	ʻ0', ʻ0'	00
Number of DIs (L)	14 _H	'1', '4'	14
Error check		LRC (2 characters)	CRC (16 bits)
Trailer		CR/LF	None
Total bytes		17	8

[1] Sample query message using Read Input Status

If input status 04A1_H does not exist, the following exception response will be returned.

Field	Sample value [Hex]	ASCII mode character string	RTU mode 8 bits [Hex]
Header		£_3 •	None
Slave address	03н	'0', '3'	03
Function code	82н	'8', '2'	82
Exception code	02н	'0', '2'	02
Error check		LRC (2 characters)	CRC (16 bits)
Trailer		CR/LF	None
Total bytes		11	5

[2] Sample exception response from a slave

The exception response consists of the slave address field, function code field, and data field. In the slave address field, the applicable slave address is set as in the slave address field of a "successful" response. In the function code field, the function code in the query is set, and then the MSB (most significant bit of the function code) of this field is set to "1". This allows the master to recognize that the message is not a "successful" response, but an exception response. An exception code indicating the content of exception is set in the data field.

Example) Query function code " 02_{H} " (00000010_{b}) Exception response function code " 82_{H} " (10000010_{b})

Exception codes

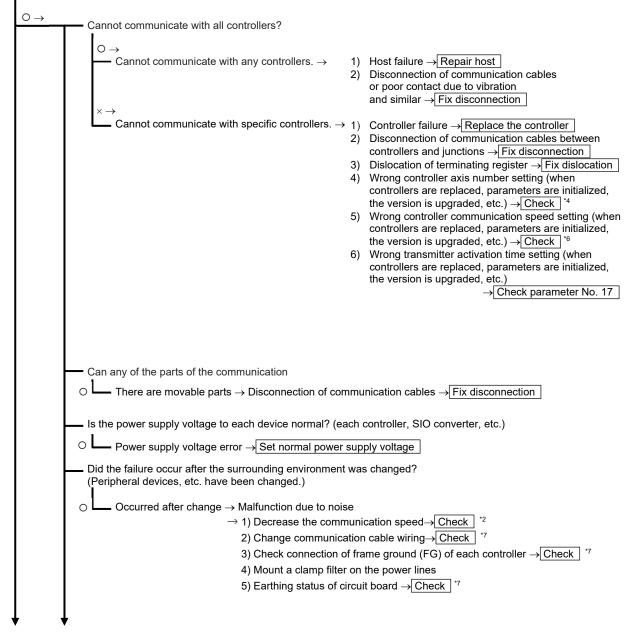
The table below lists the exception codes that may generate in controllers, as well as the contents of respective codes.

Code [Hex]	Exception code	Function	Remarks
01н	Illegal Function	Indicates that the function is invalid.	The query cannot be executed because a major error has occurred on the slave side due to function errors.
02н	Illegal Data Address	Indicates that the data address is invalid.	Use of the data address value is not permitted.
03 _H	Illegal Data Value	Indicates that the data is invalid.	Use of the data value is not permitted.
04н	Slave Device Failure	Indicates that the query cannot be executed because an irremediable error occurred in the slave.	The query cannot be executed because a major error has occurred on the slave side.

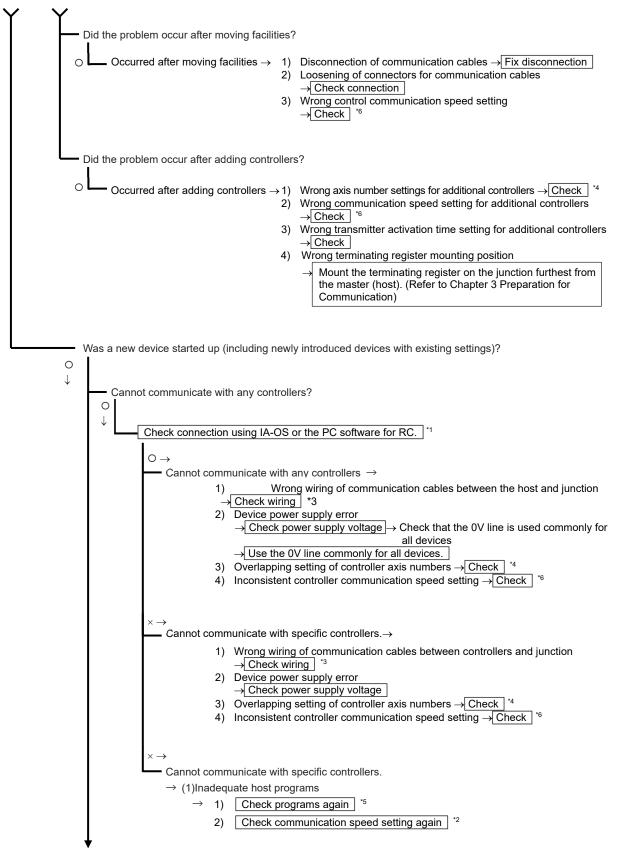
7.2 Notes

- When referencing registers using Modbus functions, registers belonging to multiple categories cannot be read simultaneously using a single message. To reference registers belonging to multiple categories, read them using multiple messages by classifying the corresponding addresses by category.
- The explanations in this specification apply commonly to RC controller Series models supporting "Protocol M". For the specifications and other items specific to each model, refer to the [RC controller's instruction manual] that comes with the applicable controller.
- In SCON Series, when the ASCII data with only header and trailer with nothing inside such as ":¥r¥n" is received, it should generate Alarm Code: 0FA "CPU Error".

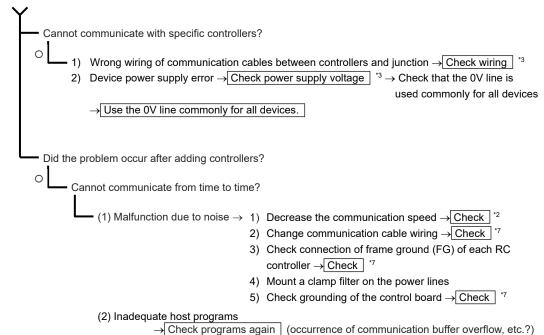
7.3 Countermeasure When Communication Not Well Established


Select an applicable item and perform the processing enclosed with \Box .

The specific processing details are explained after the flowchart; check the details indicated by the * symbol.


 $O = Yes, \times = No$

Symptom: Cannot communicate normally!


Was communication possible until now?

Continued from the previous page

Continue to the next page

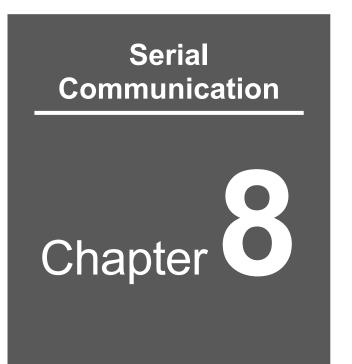
Continued from the previous page

- *1 Connect a PC to the host following the procedure explained in sections [3.1.1], [3.2] and [3.3]
- 1) Start the PC software.
- 2) Select "Application Setting" from the "Setting" menu.
 - Check that the port is set to the port number of the PC used and that the last axis number is set to a value larger than the number of connected axes in the Communication Setting window.

(If any settings are wrong, correct the settings and then restart the PC software for RC.)

- Select "Edit/Teach" from the "Position" menu.
 The Position Data Edit Axis Selection window appears, displaying the connected axes.
 Axes for which connected axis numbers are displayed can communicate normally.
- *2 Refer to [3.6] to decrease the communication speed.
- *3 Refer to [3.1], [3.2] and [3.3] to check wiring again.
- *4 Refer to [3.5] to check the axis number settings again (check that there are no overlapping numbers).
- *5 Check again that the procedure in section [3.4] is followed correctly.

- 1) If queries other than those that use a function code 03 are used, check that the PIO/Modbus switching in sections [5.4.16] (RTU) and [6.5.16] (ASCII) is set to the Modbus side.
- 2) Unless the RC controller is restarted using the PC software for RC, the communication speed setting selected when connecting the PC software for RC is maintained. In this case, restart the RC controller.
- *6 Refer to [3.6] to check the communication speed setting again.
 - Set the same communication speed for all RC controllers as well as the host.
 - * Check 5 2).
 - * The baud rate of an RC controller automatically switches to 9600bps if it detects a break (space) signal lasting 150ms or longer from the SIO port.


In some PCs, transmission lines are placed in break condition when the communication port is not open. That if such PCs are used, the baud rate of the connected RC controllers may be set to 9600 bps unintentionally.

*7 Wire communication cables such that they do not run in parallel with power cables and cables that send pulse signals.

Check that the communication cable is properly shielded (recommendation: 1-point ground). Check that the setting environment and noise countermeasures live up to the specifications given in the instruction manual of each RC controller.

If the problems are not solved after checking above step, please contact us.

In this case, please let us know about the phenomena occurring and the result of checking the items in the flowchart as well.

Reference Materials

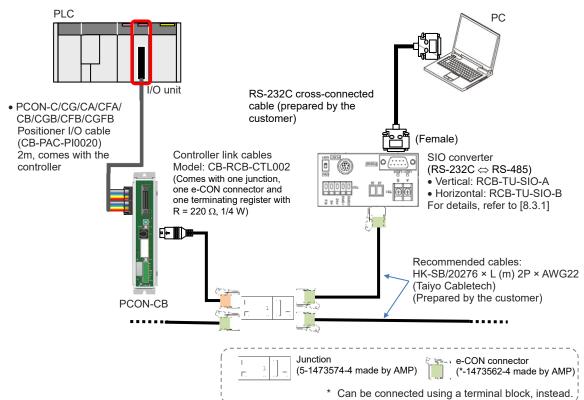
8.1	CRC	Check Calculation ······8-1					
8.2	Conf	Configuration of Systems that Use both SIO and PIO ······ 8-2					
8.3	Rega	Regarding Option Units······8-4					
	8.3.1	SIO converter					
	8.3.2	Controller Link Cable 8-8					
	8.3.3	PLC Connection Unit (RCP6S only)·····8-9					

8.1 CRC Check Calculation

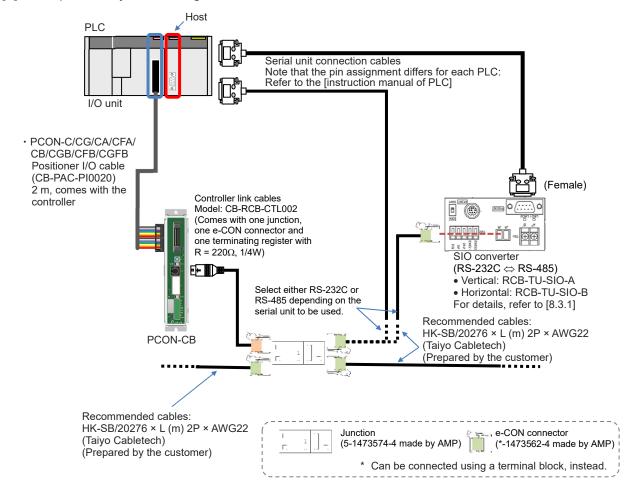
Sample C functions used for CRC calculation are shown below.

They are equivalent to the CRC calculation functions stated in the published Modbus Protocol Specification (PI-MBUS-300 Rev. J).

```
unsigned short CalcCRC16swap(
   unsigned char* puchMsg,
                                                         /* message to calculate */
   unsigned short usDataLen)
                                                         /* quantity of bytes in message */
{
   unsigned char uchCRCHi = 0xFF;
                                                         /* high byte of CRC initialized */
                                                         /* low byte of CRC initialized */
   unsigned char uchCRCLo = 0xFF;
   unsigned int uIndex;
                                                         /* will index into CRC lookup table */
   while(usDataLen--)
                                                         /* pass through message buffer */
                                                         /* calculate the CRC */
   {
   uIndex = uchCRCHi ^ *puchMsg++;
      uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex];
      uchCRCLo = auchCRCLo[uIndex];
   return (uchCRCHi << 8 | uchCRCLo);</pre>
}
const unsigned char auchCRCHi[] =
{/* Table of CRC values for high-order byte */
   0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
   0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
   0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
   0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
   0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
   0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
   0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
   0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
   0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
   0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
   0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
   0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
   0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
   0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
   0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
   0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
}:
const unsigned char auchCRCLo[] =
{/* Table of CRC values for low-order byte */
   0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04,
   0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8,
   0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC,
   0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10,
   0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,
   0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38,
   0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C,
   0xE4, 0x24, 0x25, 0xE5, 0xE7, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0,
   0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4,
   0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,
   0x78, 0x88, 0x89, 0x79, 0x8B, 0x7B, 0x7A, 0x8A, 0x8E, 0x7E, 0x7F, 0x8F, 0x7D, 0x8D, 0x8C, 0x7C,
   0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0,
   0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54,
   0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98,
   0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
   0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40,
```


};

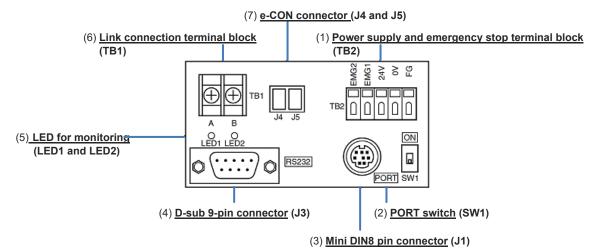
8.2 Configuration of Systems that Use both SIO and PIO


It is possible to monitor the current position and other values via the SIO (communication) by running the controller with PIO. All queries that use "function code 03" for either RTU and ASCII can be monitored. Set the [PIO/Modbus Switchover in 5.4.16 or 6.5.16] to PIO, and for the controllers equipped with the operation mode setting switch, set it to AUTO when in use. The following controller models can use both PIO and SIO. (Safety Category Type described)

- PCON-C/CG/CF/CA/CFA/CB/CGB/CFB/CGFB, PCON-CY, PCON-PL/PO
- ACON-C/CG/CA/CB/CGB, ACON-CY/CYB, ACON-PL/PO
- SCON-C/CA/CAL/CGAL/CB/CGB, DCON-CA/CB/CGB
- PCON-CYB/PLB/POB, ACON-CYB/PLB/POB, DCON-CYB/PLB/POB,
- ERC2 (PIO), ERC3

[1] Example 1 of system configuration that uses both SIO and PIO

ME0162-11A



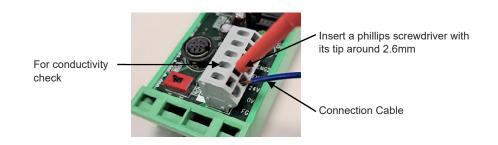
[2] Example 2 of system configuration that uses both SIO and PIO

8.3 Regarding Option Units

8.3.1 SIO converter

It is a unit to mutually covert between RS-232C and RS-485.

(1) Power supply and emergency stop terminal block (TB2)


Terminal Symbol	Contents		
EMG1, EMG2	If PORT Switch is turned to the on side, the emergency stop switch signal on the teaching pendant should be output and EMG1 an EMG2 should get short- circuited if it is turned to the off side. Take the signals out from here if it is necessary to reflect the emergency stop switch on the teaching pendant to the emergency stop circuit in the system.		
24V	Positive side of 24V DC power supply (It is the power supply for teaching pendant and conversion circuit)		
0V	Negative side of 24V DC power supply		
FG	Frame ground		

Note 0V is connected to Pin 7 (GND) on the communication connector of the controller.

Connection method

For cables to be connected, use those that complies with the required specifications below.

ltem	Specification
Compatible wires	Single wire: \emptyset 0.8 to 1.2mm Twisted wire: AWG size 20 to 18 (0.5 to 0.75mm ²)
Unsheathed Wire Length	10mm

(2) PORT switch (SW1)

It is a switch to turnover between enable/disable for the connector in (3).

Set it to the on side when it is to be used and to the off side when not to be used.

The emergency stop button switch signal output (between EMG1 and EMG2) should also be Turned over between enable/disable on the teaching pendant at the same time.

(3) Mini DIN8 pin connector (J1)

It is the inlet for the PC teaching software and the teaching pendant.

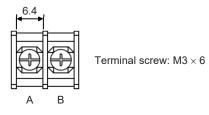
(4) D-sub 9-pin connector

A connector for connection with the PC. (RS-232C) It should be used when operation is to be performed using the SIO communication.

(5) LED for monitoring (LED1 and LED2)

LED1: Turns on/flashes when the RC controller is transmitting LED2: Turns on/flashes when the RS-232C side is transmitting

(6) Link connection terminal block (TB1)

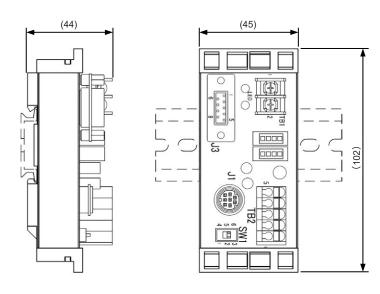

This is the connection port to obtain communication connection with the controller.

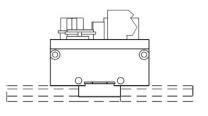
"A" on the left should be connected to the communication line (SGA) of the controller.

(To be connected with Pin 1 of (7) inside)

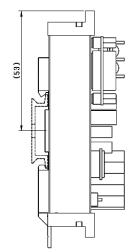
"B" on the right should be connected to the communication line (SGB) of the controller.

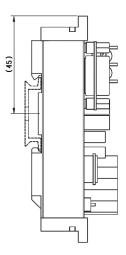
- (To be connected with Pin 2 of (7) inside)
- * For the wiring with SGA and SGB to be connected to TB1, it is required to use a shielded twisted pair cable.


(7) e-CON connector (J4 and J5)

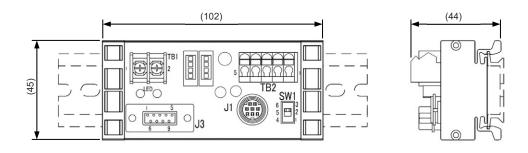

It is to be used when connection is to be established to a controller with e-CON connector without using (6).

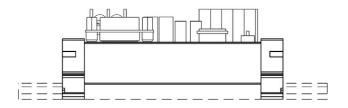
The controller link cable (CB-RCB-CTL002) of an option can be connected directly.


External Dimensions


[1] DIN Rail Vertical Mount Type (Model: RCB-TU-SIO-A)

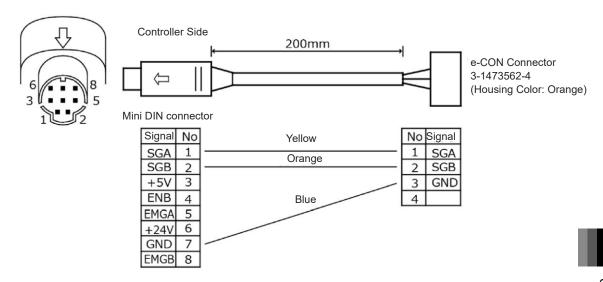
♦ Leg Element Top Side Dimensions





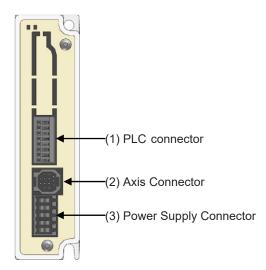
(Leg Element Bottom Side)

(Leg Element Top Side)


[2] DIN Rail Horizontal Mount Type (Model: RCB-TU-SIO-B)

8.3.2 Controller Link Cable

It should be used when connecting a controller to the serial communication link.



[Controller link cable accessories]

	Part Name	Shape	Quantity	Remarks
Accessories	4-way junction		1	Single product model number: 5-1473574-4 (Manufactured by AMP)
	e-CON Connector		1	Single product model number: 4-1473562-4 (Manufactured by AMP) * Green
	Terminal Resistance with a e-CON connector		1	Connector model number: 4-1473562-4 (Equipped with resistor with 220Ω, 1/4W)

8.3.3 PLC Connection Unit (RCP6S only)

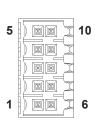
It is a unit to connect when it is required to operate RCP6S Actuator with the serial communication.

- (1) PLC Connector (0138-1108-BK manufactured by DINKLE) A connector for link connection with an RC controller
 - SD+: Connect to pin 1 (SGA) of the communication connector of the RC controller
 - SD-: Connect to pin 2 (SGB) of the communication connector of the RC controller
 - 0V: Connect to the 0V on the power.

8	Dc
	Dc
	Ac
	Ac
	DC
	Dc=
1	ДСЭ

Pin No.	Signal Name	Description
1	SD+	Serial Communication Line +
2	SD-	Serial Communication Line -
3	GND	0V
4 to 8	NC	Do not connect to them.

Caution

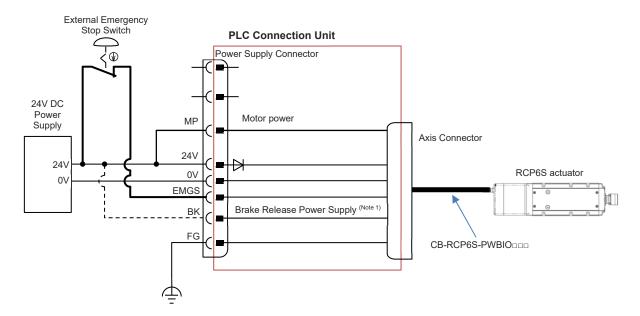

- At any area other than the teaching board, can access to the position data. "0" should be read in even if readout query gets conducted.
- For RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC, connect a teaching tool such as PC software to the teaching board in order to edit the position data.

(2) Axis Connector

It is a connection inlet to connect RCP6S actuator. Connection is to be made with a dedicated cable. Refer to the [instruction manual of each actuator].

(3) Power Supply Connector (PLC unit side model number: 0156-2B10-BK manufactured by DINKLE)

Cable side model number: 0156-2B10-BK manufactured by DINKLE



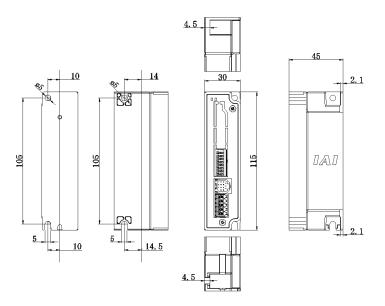
Pin No.	-	ynal me	Description		
1	FG		Frame ground		
2	NC		Do not connect to them.		
3	EMGS		Emergency Stop Status		
4	-		Do not connect to them.		
5	-		Do not connect to them.		
6	NC		Do not connect to them.		
7	GND		0V		
8	СР		Control Power Supply 24V DC 0.3A input		
		Voltage	Motor Power Supply 24V DC inp	out	
9	MP	Motor Types	28P, 35P, 42P, 56P	56SP, 60P	
		Current Amperage	High-output valid: Max. 3.2A High-output invalid: Max. 1.7A	Max. 5.7A	
10	BK		For brake release, 24V DC, 0.7A	max. input	

* Compatible wires: Single wire: Ø 0.5 to 1.5mm,

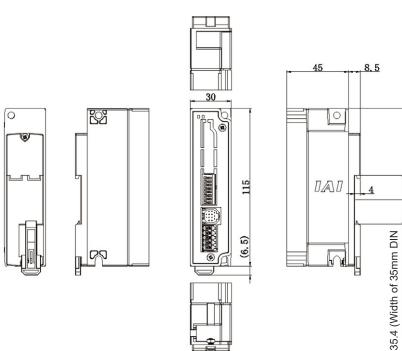
Twisted wire: AWG16 to 20 (strip length 10mm)

Example for Power Supply Connector Wiring

Note 1 It should be used when the brake on an actuator equipped with brake is to be released compulsorily.



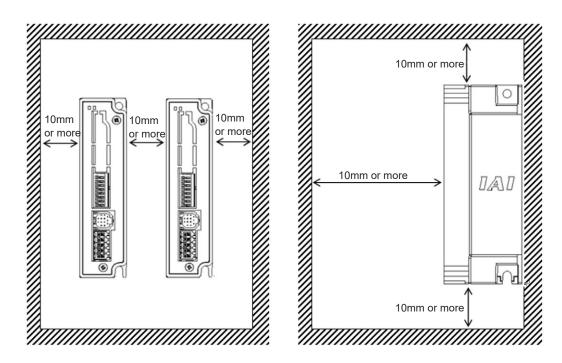
Caution


- When supplying the power by turning ON/OFF the 24V DC, keep the 0V being connected and have the +24V supplied/disconnected (cut one side only). In case of cut on both sides, the electric potential may get unstable if 0V is cut first. It may cause malfunction of components inside the controller.
- The rating for the emergency stop status (EMGS) is 24V DC and 10mA or less.
- Leave for 1s or more after shutting the power off before rebooting.
- Do not attempt to supply only the monitor power without supplying the control power.
- The voltage supplied to a controller may drop and lead to an alarm due to the cable diameter and cable length. In such a case, it is necessary to adjust the output voltage to get the controller supply voltage to 24V.

External dimensions

[1] Screw Fixing Type

[2] DIN Rail Fixing Type


8. Reference Materials

66.5 from DIN rail center

• Heat Radiation and Installation

Designing the layout and build the structure considering the size of the control box, layout of the controllers and cooling for installation and heat radiation of RCB-P6PLC, so the ambient temperature around the controllers is 40°C or lower.

To fix the units in the control box, use the attachment holes on top and bottom of the unit for the screw fixed type, and use the DIN rails for the DIN rail fixed type.

Revision History

Revision date	Revised content
2011.06	 Fourth Edition Added "Safety Guide." Added SCON-CA to the supported models. (Added the load cell calibration command, complete and measurement read commands and registers.) Readjusted the specification of query 06. Readjusted the specification of query 10.
2011.10	 Fifth Edition SCON-CA added to applicable models (Load cell calibration command, complete, calculated value reading command and register added)
2012.10	 Sixth Edition ERC3, PCON-CA/CFA added to applicable models (Maintenance information reading command and register added)
2013.06	Seventh EditionPosition data reading command added, caution added to the top regarding replacement in relation to message level error outputs
2015.10	 Eighth Edition Servo-press related items added (Query 03, 05) (Change page: P. 30 to 32, 51 to 59, 81, 84, 118, 124 to 134, 167 to 177, 229, 232, 266, 272 to 282, 315 to 325)
2016.01	 Ninth Edition RCP6_PLC connection unit related contents added (Changed and added pages: Before contents, pg. 13, pg. 17 to pg. 20, pg. 372 to pg. 375)
2017.01	9B/9C EditionCorrection made and explanation added
2018.07	 Tenth Edition Following models added to applicable models PCON-CYB/PLB/POB, ACON-CYB/PLB/POB, DCON-CYB /PLB/POB, RCM-P6PC, RCM-P6AC and RCM-P6DC Description added for restrictions for RCP6S Series Correction made
2018.08	10B EditionDescription corrected for models applicable for TFANCorrection made
2023.10	Eleventh Edition Full-Scale Revision

IAI Corporation

Head Office: 577-1 Obane Shimizu-KU Shizuoka City Shizuoka 424-0103, Japan TEL +81-54-364-5105 FAX +81-54-364-2589 website: www.iai-robot.co.jp/

IAI America, Inc.

Head Office: 2690 W. 237th Street, Torrance, CA 90505 TEL +1-310-891-6015 FAX +1-310-891-0815 Chicago Office: 110 East State Parkway, Schaumburg, IL 60173 TEL +1-847-908-1400 FAX +1-847-908-1399 Atlanta Office: 1220 Kennestone Circle, Suite 108, Marietta, GA 30066 TEL +1-678-354-9470 FAX +1-678-354-9471 website: www.intelligentactuator.com

Technical Support available in Europe

IAI Industrieroboter GmbH

Ober der Röth 4, D-65824 Schwalbach am Taunus, Germany TEL +49(0)6196-88950 FAX +49(0)6196-889524 website:www.iai-automation.com

Technical Support available in Great Britain

Duttons Way, Shadsworth Business Park, Blackburn, Lancashire, BB1 2QR, United Kingdom TEL +44(0)1254-685900 website: www.lcautomation.com

IAI (Shanghai) Co., Ltd.

SHANGHAI JIAHUA BUSINESS CENTER A8-303, 808, Hongqiao Rd. Shanghai 200030, China TEL+86-21-6448-4753 FAX +86-21-6448-3992 website: www.iai-robot.com

IAI Robot (Thailand) Co., Ltd.

825 PhairojKijja Tower 7th Floor, Debaratana RD., Bangna-Nuea, Bangna, Bangkok 10260, Thailand TEL +66-2-361-4458 FAX +66-2-361-4456 website:www.iai-robot.co.th