総合カタログ2005抜粋PDF
カタログ番号CJ0074-1A-2（2005年2月）より抜粋

掲載内容・抜粋ページ

技術資料

[P641～P652]
技術情報

単軸ロボットの構造・動作原理
アクチュエータは、基本的に下図のような構造になっています。
モータが回転するとボールネジが回転し、スライダが移動します。
エンコーダにより、移動量と速度を検出し、
モータ（ボールネジ）の回転を制御することによって、位置決めを行います。

ボールネジ
ボールネジは、下図のようにネジとスライドがボールで接触しているため、
ベアリングのように摩擦抵抗の少ない回転が可能です。

ボールネジの精度
弊社の、ボールネジのリード精度は、JIS規格（JIS B 1192）の精度等級C5,C10相当です。
C10の精度は、300mmに対する代表移動量誤差（下図参照）が±210μm と規定されています。
C5の精度（代表移動量誤差と変動の許容値）は、以下のようにになります。

ご注意 下記の数字は参考値で、絶対位置決め精度を保証するものではありません。

代表移動量誤差

<table>
<thead>
<tr>
<th>項目</th>
<th>ネジ部有効長さ (mm)</th>
<th>代表移動量誤差</th>
<th>変動</th>
</tr>
</thead>
<tbody>
<tr>
<td>を超え</td>
<td>以下</td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td></td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>630</td>
<td></td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>800</td>
<td></td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>46</td>
<td>30</td>
</tr>
<tr>
<td>1250</td>
<td></td>
<td>54</td>
<td>35</td>
</tr>
<tr>
<td>1600</td>
<td></td>
<td>65</td>
<td>40</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>77</td>
<td>46</td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td>93</td>
<td>54</td>
</tr>
</tbody>
</table>

用途の説明

1. 基準移動量：基準リード（公差の無いリード）に従って任意の回転数で回転したときの軸方向移動量。
2. 実移動量：実際の軸方向移動量の測定値。
3. 代表移動量：実移動量の傾向を代表する直線。実移動量を示す曲線から最小二乗法によって求められる。
4. 代表移動量誤差：代表移動量と基準移動量の差。
5. 変動：代表移動量線に平行な2本の直線で挟んだ実移動量曲線の最大幅。
■ 技術情報

■ 本体精度

ロボシリンダ（スライダタイプ）、単軸ロボット全シリーズの本体精度は下記の通りです。
また、本体のベース側面と下面はスライダの走りに対する基準面となっていますので、本体取付時の平行の目安にご使用下さい。

本体取付面（ベース下面）と搬送物取付面（上面）との平行度 ±0.05mm以下/m （ERCシリーズのみ±0.1mm以下/m）

フレーム取付面の平行度（平滑面上）に固定した場合 ±0.05mm以下/m （ERCシリーズのみ±0.1mm以下/m）

条件 上記値は20℃における値です。 ※1 平面度0.05mm以下

■ ロボットのフィードバック制御の種類

ロボットが指令したとおりに動いているかどうかを確認し、すれている場合にはそれを補正する動作を指令することを
フィードバック制御といい、これにはいくつかの方式があります。
アイアイの単軸ロボット/ロボシリンダ/スカラロボット/直交ロボットはセミクローズドループ制御を行っています。
これは、一般的なサーボ制御の方式で、アクチュエータの動きをエンコーダで捉えフィードバックしています。
これに対してオープンループ制御、フルクローズドループ制御は以下のような特長があります。

オープンループ制御

一般的なステッピングモータの方式でエンコーダが無い分安価ですが、フィードバック制御ではないため動作指令と動きにズレが生じた場合、補正ができません。

フルクローズドループ制御

スライダの絶対位置を計測してフィードバックするためスライダの位置が正確にコントロールされます。（セミクローズドループの場合は、アクチュエータの精度誤差よりエンコーダからフィードバックされる位置情報と実際のアクチュエータの位置に規定内の誤差が生じます）

フィードバックの種類

■ オープンループ制御

■ セミクローズドループ制御

（一般的なサーボ制御）

■ フルクローズドループ制御

（高精度位置決め）
■ 技術情報

■ 位置決め時間の計算方法

アクチュエータの位置決め時間を計算式で求める事ができます。

移動距離、加減速度の条件により、下記の2つの動作パターンがあります。

A 台形パターン

B 三角パターン

まず、台形パターンか三角パターンかを確認後、それぞれの計算方法で算出します。

動作パターン確認方法

移動距離を設定加速度で動作させた際、到達する速度が設定速度より大きいか小さいかで、台形パターンか三角パターンかの判断ができます。

到達速度（Vmax）＝ \(\sqrt{\text{設定加速度} \times \text{設定距離}} \)

\(= \sqrt{\text{設定速度} \times 9.800 \text{mm/sec}^2 \times \text{設定距離}} \) となります。

位置決め時間の算出方法

A 台形パターン

\[\text{位置決め時間} = \frac{\text{距離}}{\text{速度}} + \frac{\text{速度} \times \text{加速度}}{2} \]

B 三角パターン

\[\text{位置決め時間} = 2 \times \sqrt{\frac{\text{距離}}{\text{加速度}}} \]
ISA/ISPA/ISPDCRシリーズ加速度条件による可搬質量表

ご注意 1.下記可搬質量の数値は参考値です。保証値ではありませんのでご注意を。
2.加速度が定格加速度以下でも、可搬質量は定格加速度の可搬質量以上にはなりません。
3.ISA, ISAP, ISPDCR以外のシリーズは、定格加速度以下でご利用下さい。

<table>
<thead>
<tr>
<th>タイプ</th>
<th>モーダル出力 (W)</th>
<th>リード長 (mm)</th>
<th>空洞速度 (mm/sec)</th>
<th>定格加速度 (G)</th>
<th>定格加速度時の可搬質量 (kg)</th>
<th>最大加速度 (G)</th>
<th>加速度別可搬質量 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SXM</td>
<td>80</td>
<td>16</td>
<td>800</td>
<td>0.3</td>
<td>水平 12 1.0</td>
<td>3</td>
<td>12 9 7 6 5 4.5 4 3.5</td>
</tr>
<tr>
<td>SYM [S]</td>
<td>8</td>
<td>400</td>
<td>0.3</td>
<td>水平 3 0.7</td>
<td>2.7 2.5 2.3 2.1 2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>200 0.15</td>
<td>水平 6 0.5</td>
<td>50 37.5 30</td>
<td>14 0.3</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>SZM</td>
<td>8</td>
<td>400</td>
<td>0.3</td>
<td>水平 6 0.3</td>
<td>6 5.5 5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>200 0.15</td>
<td>水平 14 0.3</td>
<td>12 12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MXM</td>
<td>100</td>
<td>20 1000</td>
<td>0.3</td>
<td>水平 20 1.0</td>
<td>20 15 12 10 6.5 7.5 6.5 6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MYM [M]</td>
<td>10</td>
<td>500</td>
<td>0.2</td>
<td>水平 9 0.5</td>
<td>8.2 7.6 7 5 4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>250 0.15</td>
<td>水平 19 0.3</td>
<td>20 15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MZM</td>
<td>10</td>
<td>500</td>
<td>0.2</td>
<td>水平 9 0.5</td>
<td>8.2 7.6 7 5 4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>250 0.15</td>
<td>水平 19 0.3</td>
<td>12 15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MXM</td>
<td>200</td>
<td>30 1500</td>
<td>0.3</td>
<td>水平 25 1.0</td>
<td>25 20 17 15 13.5 12 11</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>MYM [M]</td>
<td>20</td>
<td>1000</td>
<td>0.3</td>
<td>水平 40 1.0</td>
<td>40 30 24 20 17 15 13.5 12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>500</td>
<td>0.2</td>
<td>水平 9 0.8</td>
<td>8.2 7.6 7 6.5 6 5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MZM</td>
<td>10</td>
<td>500</td>
<td>0.2</td>
<td>水平 9 0.5</td>
<td>8.2 7.6 7 5 4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MXMX</td>
<td>200</td>
<td>30 1500</td>
<td>0.3</td>
<td>水平 25 0.3</td>
<td>25 15 13 11 9 7 5</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>[MX]</td>
<td>20</td>
<td>1000</td>
<td>0.3</td>
<td>水平 40 0.3</td>
<td>40 30 24 20 17 15 13.5 12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LXM</td>
<td>200</td>
<td>20 1000</td>
<td>0.3</td>
<td>水平 40 1.0</td>
<td>40 30 24 20 17 15 13.5 12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LYM [L]</td>
<td>10</td>
<td>500</td>
<td>0.3</td>
<td>水平 9 0.8</td>
<td>2.7 2.6 6.5 5.5 5.4 4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>250 0.15</td>
<td>水平 19 0.5</td>
<td>16.6 16.3 14 12 10 8 6 4</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LXM</td>
<td>200</td>
<td>40 2000</td>
<td>0.3</td>
<td>水平 40 1.0</td>
<td>40 30 25 20 18 16 15 13 12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LYM [L]</td>
<td>10</td>
<td>1000</td>
<td>0.2</td>
<td>水平 9 1.0</td>
<td>7.2 6.6 6.5 5.5 5 4.6 4.3 4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>500</td>
<td>0.2</td>
<td>水平 80 1.0</td>
<td>80 60 48.5 40.5 34.5 30 27 24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LXM</td>
<td>200</td>
<td>40 2000</td>
<td>0.2</td>
<td>水平 9 1.0</td>
<td>7.2 6.6 6.5 5.5 5 4.6 4.3 4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LYM [L]</td>
<td>10</td>
<td>1000</td>
<td>0.2</td>
<td>水平 80 1.0</td>
<td>80 60 48.5 40.5 34.5 30 27 24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LZM</td>
<td>10</td>
<td>500</td>
<td>0.2</td>
<td>水平 39 0.5</td>
<td>35.3 32.6 30 28 26 24 22 20 18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LMX</td>
<td>200</td>
<td>20 1000</td>
<td>0.3</td>
<td>水平 40 0.3</td>
<td>40 30 24 20 17 15 13.5 12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LX[MX]</td>
<td>20</td>
<td>40 2000</td>
<td>0.3</td>
<td>水平 40 0.3</td>
<td>40 30 24 20 17 15 13.5 12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1000</td>
<td>0.3</td>
<td>水平 80 0.3</td>
<td>80 60 48.5 40.5 34.5 30 27 24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LX[UXW]</td>
<td>200</td>
<td>40 2000</td>
<td>0.3</td>
<td>水平 40 0.3</td>
<td>40 30 24 20 17 15 13.5 12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1000</td>
<td>0.3</td>
<td>水平 80 0.3</td>
<td>80 60 48.5 40.5 34.5 30 27 24</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

ISA, ISPA, ISPDCRシリーズに含まれるタイプはISPDCRシリーズです。

644 テクニカル サポート

技術情報
■ 技術情報

■ 命命について

基本的考え方
弊社のアクチュエータに対する考え方は、よりユーザの立場に立ったカタログ表示をする事にあります。
例えば寿命に関する要素としての「応力荷重」には、静荷重荷重と動力
荷重があります。ガイドの外側に取付けと静荷重荷重とは、
一定の荷重を加えたとき負荷に影響を及ぼす荷重を指し、動荷重荷重は一定負荷の外側に加えた後、ガイドの動荷重と一定の荷重を
同一の負荷で表示されます。
静荷重と動荷重を比べると動荷重の方が高い値となります。 ISシ
リーズは動荷重表示を行っています。

ガイドメーカー是行進50km、残存率90％の時を基本動荷重
荷重として表示していますが、製造機械の寿命は、移動速度、用途等
などを考慮すると、実際の走行距離に換算して5000kmから
10000kmは必要です。
またガイドの寿命はライニング負荷に対しては充分余裕があり、実際に
はモーメント負荷による偏荷重が寿命に対して最も影響を与えます。
ISシリーズでは製造機械の実際の使用条件に沿って、負荷モーメン
トは仕様書に記載にあるように荷重係数1.2の場合の走行
10000km寿命で表示しています。これはユーザ様が実際の使用
時に分かりやすいよう、私達が業界先駆けて表示を始めた内容です。

当社の寿命計算式は次の通りです。（走行寿命10000kmの場合）

\[
L = \frac{\left(C_{AI} \right)^{3/2}}{P} \times 10000 \text{km}
\]

\[
C_{AI} = \frac{C_{450} \times \left(50 \text{km} / 10000 \text{km} \right)^{3/2}}{fw}
\]

前記条件でスペック表示された市販ガイドをISと同じ条件で換算す
ると負荷能力は表示値の1/7程度になります。

静的荷重荷重条件での考え方
それぞれは静荷重として加える荷重、例えば先端でカシミ作業を行う
場合等ではどうでしょうか。 ガイドの能力は充分高く、通常は問題あ
りません。
例えば弊社のIS-M（中型）では計算上3トーンの荷重に耐えられますが、
実際これだけ荷重を加えるとフレームが浮いている場合フレーム
の方が変形してしまいます。
これを決定するのフレームの強度と、組み合わせるプラケットの取
付強度によって決定されます。

通常はベースが荷重が加わる部分で浮いていない場合、高速タイプ
最大出力を搭載した機械の水平搬送荷重の5倍と考え下さい。
またモーメントは走行10000km寿命の値の3倍以下にして下さい。
張出負荷長はスライダの長さの5倍の値を表示し、実際につけて
よい長さの目安にしております。

この値は一つには負荷が張り出すことで発生するモーメントが走行
寿命の範囲に収まるように考慮した値であり、もう一つは動特性を
考慮した値を経験値から計算し長めとして表示したものです。
通常ご使用いただく際にはこの値の範囲内であれば上記問題は発
生しないとお答えいただけます。

この範囲は一般に次のようにお考え下さい。
精密位置決め、振動を極力なくした安定した計測をする場合は上記
値の60％、例えばCCDカメラを用いた大きな拡大率で画像処理する
場合等です。
先端に大きな荷重が加わる用途、計測用途では上記値の80％を推
奨します。
モーメントが許容値に対して余裕があれば、スライダ長さの5倍とい
う許容値を超えることも可能です。アクチュエータ取扱を組み合わ
せて使うなら5.5倍までは先端の振れが出ることもありますが、一
般的P&P作業等なら実用上支障はありません。
中間サポート機構（特許取得）について

中間サポート機構は、スライダと連動して動くボールネジサポート機構を追加することで、ロングストロークの場合のボールネジの振れを抑え、危険回転数の帯域をアップさせロングストロークタイプの最高速度を大幅に向上させた画期的な機構です。

中間サポート機構の構造は、スライダを貫通した連結棒（ストロークの半分の長さ）で固定されたボールネジサポートがワイヤーを介して右図のように固定されています。

ワイヤーの一端はベースのストローク中央部に固定され、ボールネジサポートの滑車を介してスライダに固定されています。

この機構によりスライダの移動量の1/2だけボールネジサポートが移動し、ボールネジサポートは常にスライダとストロークエンドの中間位置でボールネジをサポートする形となり、結果ボールネジの振れを抑えることができます。

保護構造について

保護構造とは、水や人体および形状異物からの保護の度合いのことです。

IEC (International Electrotechnical Commission)、JIS（日本工業規格）およびJEMA（日本機械工業会）の規格に基づいて以下のように表示しております。

IEC規格

<table>
<thead>
<tr>
<th>第1示性数字で示す保護の程度</th>
<th>第2示性数字</th>
<th>水の浸入に対する保護</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>無保護のもの。</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>人体または内部の水薄物に浸しない (bg2mm)。</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>電気などの内部の水薄物に浸しない (bg12mm)。</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>電気または重量25mmを越える工具、 ワイヤーなどの水薄物に浸しない。</td>
<td>25mm</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>電気または重量1.0mmを越える工具、 ワイヤーなどの水薄物に浸しない。</td>
<td>1.0mm</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>電気または重量1.0mmを越える工具、ワイヤーなどの水薄物に浸しない。</td>
<td>1.0mm</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>電気または重量1.0mmを越える工具、 ワイヤーなどの水薄物に浸しない。</td>
<td>1.0mm</td>
</tr>
</tbody>
</table>

※ご注意

保護構造はケーブルを含んで規定されていますが、ケーブルを含むコネクタは保護対象でありません。従って、ケーブル末尾から水が浸透する恐れがある使用方法は避けてください。

ここから水が浸透しないこと。
技術情報

用語説明
（アイエイアイの製品に関する用語説明ですので一般的な意味よりも具体的に説明しています）

10000km走行寿命について
フィールドで実際に使う場合には、10000時間程度の保証が必要になります。その場合、運動速度、荷重等を考慮すると走行距離換算で5000kmから10000kmになります。ガイドの寿命はラジアル荷重に対しては完全に余裕があり、むしろモーメント荷重による偏荷重が寿命に対して問題となります。

弊社では、この為10000km走行を保証出来る動安定性能を示し10000km走行寿命としています。

50km走行寿命について
ガイドメーカーが、その許容荷重能力を表わす一つの方法として提示する表現方法。この許容ラジアル荷重（基本動安定荷重）の荷重を掛け走行させた時損じない試験荷重（たとえば荷重が70%である）。確実な応力消散性を考慮すると実際の走行距離換算してに5000kmから10000kmの動作保障が必要となります。その意見からみても理解しにくいデータです。

A相（信号）出力・B相（信号）出力
インクリメンタル形の出力で図のようなA相、B相の位相差を用いて正転・逆転を判定します。正転の場合A相はB相に対して先行します。

出力モード図

正転（CW）

逆転（CCW）

<table>
<thead>
<tr>
<th></th>
<th>正転（CW）</th>
<th>逆転（CCW）</th>
</tr>
</thead>
<tbody>
<tr>
<td>A相</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B相</td>
<td></td>
<td></td>
</tr>
<tr>
<td>位相差</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z相</td>
<td>*90°（T/4）A信号が早い</td>
<td>*90°（T/4）B信号が早い</td>
</tr>
</tbody>
</table>

注 360°（1T）は電気角で機械角ではありません。

Z相
インクリメンタルエンコーダの基準点を検出する相（信号）で、原点復帰動作の際、原点を検出するために使用します。

原点復帰時に基準となるZ相信号をさかず事をZ相サーチといいます。

CCW（反時計回り）
Counter Clockwise Rotation の略。
軸から見て左回り、すなわち時計の針と逆方向へ回る回転のことを言います。

CW（時計回り）
Clockwise Rotation の略。
軸から見て右回り、すなわち時計の針と同じ方向に回る回転のことを言います。

PLC
プログラマブル ロジック コントローラの略。
（エーケーエー、プログラマブルコントローラとも言います）。
生産設備装置を制御するためのプログラム可能なコントローラです。

SEL言語
SHIMIZUKI DEN・ECOLOGY・LANGUAGE の略から当社独自のプログラム言語の名前です。

Z相
インクリメンタルエンコーダの基準点を検出する相（信号）で、原点復帰動作の際、原点を検出するために使用します。

原点復帰時に基準となるZ相信号をさかず事をZ相サーチといいます。

C10
ボールネジの等級で、数値が小さくなる程、精度が良くなります。
転造C10は、300mmストロークにつき代表移動量誤差が±0.21mmと規定されています。ボールネジの精度は451ページ参照。
■ 技術情報

■ 用語説明

エンコーダ

ストリットの入った円盤に光りを当て、円盤が回転する事をセンサーで光のON・OFFを感知し、回転数や回転方向を認識する為の装置。（回転数をパルスに変換する装置）コントローラは、このエンコーダからの信号でスライドの位置と速度を検出したます。

インクリメント形エンコーダ

出力パルスの数で軸の回転角を回転数を検出します。そのため、回転数や角を検出するためには出力パルス数を算出するためのカウンタが必要となります。一方、パルス測定の立ち上がり、立ち下がりを利用してパルス数を2倍、4倍に変える、電気的に分

オープンループ方式

制御方式の一種。指令のみを行い、フィードバックをとらない方式です。

オフセット

位置をすらす事。

オフライン

コントローラへRS232ケーブルを接続しないでパソコン対応ソフトを立ち上げた時の状態の事。

オペレーション

操作の事。

オンラインモード

コントローラへRS232ケーブルを接続してパソコン対応ソフトを立ち上げた時の状態の事。

ガイド

アクチュエータのスライダをガイドする（支える）機構。直線動作をサポートするベアリング機構。

ガイドモジュール

2軸組合せで、Y軸の張り出しが大きい時に、Y軸の先端の補助としてX軸と平行に使用する軸。代表機種はF5-12W0、F5-12N0タイプになります。

カップリング

シャフトとシャフトをジョイントする部品。

X軸とY軸のジョイント。

ガントリ

XYの2軸組合せでY軸サポート用のガイドを取り付け、Y軸に重い物を持たせる事が出来るようにした組合せのタイプ。
■ 技術情報

■ 用語説明

キー溝付き
キー取用時の溝を、回転軸または取り付け部品に加工してある事。
（キー：回転軸とかえ部品の回転方向の位置スレ防止手段の一つ）

ジャバラ
外からのこみや埃の侵入を防ぐシートの事。

スクラ
スクラ（SCARA）とはSelective Compliance Assembly Robot
Armの略で特定の方針（水平方向）だけにコンプライアンス（弾性）
を持ち、垂直方向は剛性が高いという特長を持ったロボットです。

ステッピングモータ
オープンループ制御で入力パルス信号に比例した角度位置決めを
するモータ。

ステンレスシート
ISD、DS、RCなどのスライダタイプに使われている防塵シート。

スライダ積載質量【kg】
仕様書に示された加減速係数（工場出荷時の設定値）で動作させた
時、速度波形、電流波形に大きな変化を生ずる事なく、良好な動作を
する時のスライダ積載最大質量。

スラスト荷重
軸方向に加わる荷重。

セミクローズドループ方式
エンコーダから送られてくる位置情報や速度情報を常にコントロー
ラにフィードバックして制御する方式。

ソフトリミット
ある一定のストロークをそれ以上進まない様にソフトウェア上で制限する事。

ダイナミックブレーキ
モータの回生エネルギーを利用したブレーキ。

ディスペンサ
液体の流量を制御する機器、接着剤、シール剤等の塗布装置に組み込む。

クリーン度
クリーン度を表す単位としてクラス100、クラス10などがあります。
クラス10（0.1 μm）は1立方フィート中に0.1 μm以上のゴミが
10個以下の環境を指します。

グリス
ガイドやボールネジの動きをスムーズにするために接触面に塗布す
る粘度の高い油。

スライダ積載質量【kg】
仕様書に示された加減速係数（工場出荷時の設定値）で動作させた
時、速度波形、電流波形に大きな変化を生ずる事なく、良好な動作を
する時のスライダ積載最大質量。

グリスアップ
グリスを潤滑部に注入・塗布すること。

スライダ積載質量【kg】
仕様書に示された加減速係数（工場出荷時の設定値）で動作させた
時、速度波形、電流波形に大きな変化を生ずる事なく、良好な動作を
する時のスライダ積載最大質量。

ゲイン値
コントローラがサーボモータを制御する際に反応（応答）を調整する
数値。一般にゲイン値が高くなると反応は早くなり低くなると遅くな
ります。

サーボフリー（サーボOFF）
モータ電源を切った状態。スライドを自由に動かせる。

サーボロック（サーボON）
上記の逆で、モータ電源が入った状態。スライドが決められた位置
を保持し続ける。

サイクルタイム
一つの工程にかかる時間。
技術情報

用語説明

デューティー
機械の業界では、稼働率を指します。（例：1サイクル中アクチュエータが動作している時間）。

ネジの種類

| ネジの回転運動を直線運動に変換するためのネジには右旋のような種類があります。 |
ボールネジ	特 韻
研磨	ネジを研磨仕上げするため研磨仕上げが可能
転換	ネジを転換仕上げするため大径生産が可能
スペシャルネジ	荷重であるが粗度が悪く、寿命も短い。また高速転換に向かない。

バックラッシュ【backlash】
右図の様に、ボール（鋼球）とねじ軸及びナットとの間にすき間があり、ねじ軸が動いてもそのすき間部分はナットは動きません。このスライダ移動方向の機械的な遊びをバックラッシュといいます。測定方法はスライダに送りをかけて、すき間に動き出した時のテストインジケータの読みを基準とし、更にその状態から送り装置によりますに、スライダを同方向に所定の荷重で動かし、荷重を抜いた時に基準値との差を求めます。この測定を移動距離の中央及び半径端のそれぞれの位置で行い、求めた値の内最大のものを測定値とします。

ピッチエラー【ピッチ誤差またはリード誤差】
アクチュエータの重要な機械要因の一つのネジ/ボールスクリューは、製造上に熱処理工程が含まれる等の問題から、精密に見ると必ずしも誤差の少ないものには仕上がっております。それらの精度を定性的に表すものとしてJISに定められた精度等級があります。市販の転換ネジでは、これらの許容値はC10というクラスに設定されています。

C10に要求される精度は長さ300mmにつき誤差±0.21mmになっています。一般にはねじピッチエラー誤差はプラスがマイナスの方向に累積されていきます。これを改善する一方法として研磨仕上げがあります。

ピッチャング
スライダ移動軸上の前後方向の角度の動き。（Ma方向）

ブレーキ
主に垂直軸で使用し、サーボオフ時にスライダの落下を防止する。電源断でブレーキONになる。

フレキシブルホース
スカラロボットのMPGケーブルユーザ配線を通している管。

メカエンド
アクチュエータのスライダがメカ的に停止する位置。機械的なストッパー。（例: ウレタンゴム）

ヨーロング
スライダ移動軸上の左右方向の角度の動き。（Mb方向） ピッチャング共にレーザ角度測定システムで測定し、その読みの最大差で表します。

ラジアル負荷
水平のスライダに対して90°方向の上から下に対する負荷。

リード
送りネジのリードとはモータの1回転（つまり送りネジが1回転した時）に移動する距離を指します。

リードの値の見方
リードの値によってアクチュエータの速度と推力が変化します。

●速度　ISのACサーボモータの場合、定格回転数が3000rpmです。つまり1秒では50回転です。この場合ネジリードが20mmとすると速度は50回転/s×20mm/回転＝1000mm/sとなります。

●推力　リードが大きいと推力が小さく、小さいと推力は大きくなります。
技術情報

用語説明

ローリング
スライド移動軸上における軸回りの角度の動き。（Mc方向）

ロストモーション【mm】
まず、一つの位置について、正の向きでの位置決めを行い、その後の位置を測定します。次に同じ向きに指令を与え、その位置から負の向きに同一の指令を与えた移動させ、負の向きでの位置決めを行い、その位置を測定します。更に負の向きに指令を与え、その位置から正の向きに同一の指令を与えて移動させ、正の向きの位置決めを行い、その位置を測定します。この方法による測定を繰り返し、正及び負の向きで、それぞれの位置決めの停止位置の平均値の差を求めます。この測定を動の中央、及びほぼ両端のそれぞれの位置で行い、求めた値の内最大のものを測定値とします。（JIS B6201準拠）

位置決め完了幅
位置決めするべきポイントに対して、位置決め完了とみなす幅、パラメターで設定されています。（PEND BAND）

位置決め収束時間
移動の際の理想計算値に対する実際の移動時間との差。（位置追込時間、コントローラ内部の演算処理時間）又、広い意味ではメカ的な振動が収束する時間まで含めます。

繰り返し位置決め精度
同一のポイントへ、繰り返し位置決めを行った場合の、停止位置の精度のばらつき。

絶対位置決め精度
座標値で指定された任意の位置決めポイントを、位置決めを行った場合の、座標値と実測値の差。

回生エネルギー
モータが回転すると自らが発生するエネルギーの事でモータの減速時にモータのドライバー（コントローラ）にそのエネルギーが返ってきます。このエネルギーを回生エネルギーと呼びます。

回生抵抗
回生電流を放電させる抵抗の事。
当社のコントローラに必要な回生抵抗については、各コントローラのページに記載しています。

外部運転モード
外部機器（PLC等）のスタート信号によって起動する運転モードの事。自動運転とも言います。

過電圧
指令速度が速すぎてモータへ規定値以上の電圧がかかる事。

稼動率
アクチュエータが実際に稼働している時間と停止している時間との割合の事。デューティーとも言います。

可搬質量
アクチュエータのスライド/ロッドで動かすことができる物の質量。

危険速度
ボールネジが共振するスライドの速度（ボールネジの回転数）の事。使用可能速度の物理的な上限。

原点
アクチュエータの動作の基準点。アクチュエータは移動する位置を全て原点から何パルスカウントした所と記憶しています。

原点精度
原点復帰を行った時の位置のばらつき量（原点がずれると全ての位置がずれます）。

651 技術情報
■ 技術情報

■ 用語説明

原点復帰
電源を入れた後、原点を検出するために行う動作。

原点復帰方法
原点復帰の方法。押し当て方式とLS（リミットスイッチ）方式が選択出来ます。

最大推力 [N、kgf]
速度10mm/s、あるいは定格速度でスライドを移動中に、短時間連続で発生可能な最大推力。（この値は、コントローラの電源リミット設定とトランス容量によって決定されます）

条数
一般に使われているねじは、1回転にピッチ（ねじの開き合う山と山の間の距離）1分だけ進みます。これは1リードの間に1条のらせんがあるためであり、これを1条ねじといいます。この場合、ねじを1回転させたときに進む距離として定義されるリードは、ねじのピッチと同じです。
一方、1リードの間に2条あるいは3条のらせんがあるねじもあります。これを多条ねじといいます。

真直度
直線であるべきアクチュエータの運動が、理想直線からずれている程度を言います。
水平真直度：アクチュエータ移動軸の左右（水平）方向の動き
垂直真直度：アクチュエータ移動軸の上下（垂直）方向の動き
テストバーとインジケータまたは、レーザ真直度測定システムで測定します。読みの値を互いに並行な二つの直線で、その間隔が最小になるようにはさんだ時の間隔で表します。直交型ロボットシステムでは、組み合わせた場合にこれらの精度が普段される事になります。

水平可搬質量
アクチュエータを水平に使用したときにスライドに乗せて移動できる質量のこと。

接点出力
リレーを使用した出力。

定格出力【W】
アクチュエータに使用しているモータの出力を示します。

定格推力【N、kgf】
定格速度時にスライドが外部に対して連続して発生できる力。（一定速時）
また、スライドに常に外部から負荷が加わる場合は、定格推力以下で使用する必要があります。（加速減速に要するパワーやモータの発熱を考慮し、定格推力×0.7以下として下さい）

定格速度【mm/s】
仕様書内に示される定格条件を満たす事ができる時の移動速度。

張出し許容長【mm】
ワークをアクチュエータ・スライド中心からオフセットして取り付けた場合に、アクチュエータに悪影響を及ぼすような振動を伴わず、円滑に動作できるオフセット量の目安。この値を越えて使用した場合は、振動により位置決め時間を要したり、オーバーシュートが大きい等の影響が出る可能性がありますので、許容張出し負荷長内で使用願います。この張出し許容長は、ガイド部分のスパンの3倍を目安に設定しており、この値は技術値と実験値から求めた値です。
この値を越えた場合は、直ちに何等かの悪影響が出るとは言えませんが、停止時の振動が大きくなり、衛星荷重が加わる等、アクチュエータ（ガイド部）に好ましくありません。

負荷モーメント【N.m、kgf.m】
荷重係数1.2とした時の走行寿命を考慮した動的許容モーメントです。静的なモーメントであれば、MA、MB、MCについては、負荷モーメントの3倍まで加えられます。